首页|偏心旋转环状周期结构参激振动分析

偏心旋转环状周期结构参激振动分析

扫码查看
针对偏心旋转环状周期结构的参激振动问题,利用Hamilton原理建立了含时变激励的动力学模型,分析了不同附加支撑的拓扑结构及其参数组合对固有频率分裂的影响,应用Floquét理论预测了不稳定域,揭示了固有频率分裂与稳定性的关系,还分析了分组支撑拓扑结构的振动波数、组内夹角及节径夹角对稳定性的影响,并据此提出一种改善稳定性的方法。结果表明:附加支撑的拓扑结构与波数满足一定条件时,固有频率发生分裂,参激振动被激起,参激不稳定域主要出现在固有频率及其线性组合处;参激不稳定域随组内夹角呈现周期性变化,节径夹角对各不稳定域的影响不同。
Parametric vibration analyses of eccentric rotational ring-shaped periodic structures
A dynamic model with time-varying excitation of eccentric rotating structures was established based on Hamilton principle to solve the parametric vibration problem of eccentric rotational ring-shaped periodic structures.The influences of topological structures with different supports and parameter combinations on natural frequency splitting were analyzed.Floquét theory was used to calculate the instability regions for different parameters,and the relationship between the natural frequency splitting and the instability regions was revealed.In addition,the influences of wavenumbers,intergroup angle,and the angle between the radius and rotary supports of grouping topology on the stability were analyzed,based on which a method for improving stability was proposed.The results showed that natural frequencies splitting and the parameter excitation arose when the topology of the rotary supports and wavenumbers met some specific relationships.The parametric instability mainly appeared at the natural frequency and their linear combinations.The instability regions changed periodically with the intergroup angle,and the angle between the radius and rotary supports had different influences on each instability region.

eccentric rotational ring-shaped periodic structuresrotational supportsparametric vibrationnatural frequency splittingparametric stability

魏振航、王世宇、王一凡

展开 >

天津大学机械工程学院,天津 300350

天津大学机构理论与装备设计教育部重点实验室,天津 300350

天津大学天津市非线性动力学与控制重点实验室,天津 300350

偏心旋转环状周期结构 旋转支撑 参激振动 固有频率分裂 参激稳定性

2024

航空动力学报
中国航空学会

航空动力学报

CSTPCD北大核心
影响因子:0.59
ISSN:1000-8055
年,卷(期):2024.39(11)