首页|基于自适应径向基函数模型的区间不确定性分析方法

基于自适应径向基函数模型的区间不确定性分析方法

扫码查看
针对区间不确定性分析问题,提出一种基于径向基函数模型的自适应不确定性分析算法。首先提出一种适用于径向基函数模型的采集函数-潜在最值函数,并针对最大/小值问题特性将其细分为潜在最大/小值函数。针对区间不确定性分析问题,建立基于潜在最大/小值函数的序列优化框架,完成区间不确定性分析问题的高效高精度求解。通过3个算例的分析结果表明:相比于粒子群优化(PSO)算法和顶点法等算法,所提算法能够在保证计算精度的同时,有效提高区间不确定性问题的分析效率;相对于采用拉丁超立方法一次抽样构建径向基函数模型,之后使用粒子群优化算法计算响应边界(LHS+PSO)的方法,所提算法通过采集函数序列更新模型,提高了模型在局部区域的模型逼近效果,保证了区间不确定性问题的分析求解精度。
Interval uncertainty analysis method based on adaptive radial basis function model
Considering the problem of interval uncertainty analysis,an adaptive uncertainty analysis method based on radial basis function model was proposed.Firstly,an acquisition function,also called the potential maximum function,which can be combined with the radial basis function model,was presented,and subdivided into potential maximum/minimum functions according to the characteristics of the maximum/minimum problem.Then,for the interval uncertainty analysis problem,a sequential optimization framework based on the potential maximum/minimum function was established to complete the efficient and high-precision solution of the interval uncertainty analysis problem.Three examples showed that,the proposed method can improve the computational efficiency of particle swarm optimization(PSO)and vertex method with accurate solution;also,the method refined the model sequentially through the proposed acquisition function,so compared with the method in which the Latin hypercube sampling is used to perform the"one-shot"sampling for radial basis function model constructing,and the response bounds is estimated through particle swarm optimization(LHS+PSO),it can guarantee the accuracy of the predicted bounds by improving approximate accuracy of the model in local regions.

radial basis functioninterval modeluncertainty analysisBayesian global optimizationpotential maximum/minimum function

姜峰、洪林雄、李华聪

展开 >

西北工业大学动力与能源学院,西安 721002

工业和信息化部电子第五研究所,广州 510610

径向基模型 区间模型 不确定性分析 贝叶斯全局优化 潜在最大/小值函数

2024

航空动力学报
中国航空学会

航空动力学报

CSTPCD北大核心
影响因子:0.59
ISSN:1000-8055
年,卷(期):2024.39(11)