首页|基于高斯过程回归的铣削机器人模态参数预测

基于高斯过程回归的铣削机器人模态参数预测

扫码查看
工业机器人结构频率响应函数的获取、动力学参数的辨识对机器人铣削加工预测影响显著,且模态参数具有较强的位姿依赖性.有限元法和动力学模型因难以对机器人刚度、阻尼等特性准确建模而导致失准现象的出现.为快速准确地预测铣削机器人加工空间内所有姿态下的模态参数,提出一种基于高斯过程回归的模态参数预测方法.首先探究六自由度串联机器人关节角和欧拉角对机器人铣削系统的模态参数影响,在此基础上,通过平面内245组姿态的模态敲击实验,建立针对机器人位姿变化的模态参数预测模型,揭示模态参数随机器人位姿变化的规律,使得仅需有限次的模态测试实验便可预测范围内任意位姿处的模态参数.结果表明:预测的频率响应函数曲线与实测的频率响应函数曲线结果吻合良好.
Modal parameters prediction for robotic milling based on Gaussian process regression
The acquisition of the frequency response function of the robotic structure and the identification of dynam-ic parameters have a significant impact on the prediction of robotic milling,and modal parameters have strong pos-ture-dependence.The finite element method and dynamic model often lose accuracy due to the difficulty in exactly modeling the stiffness and damping properties of robots.To predict the modal parameters quickly and accurately in all robot postures within the machining space,this paper proposes a modal parameter prediction method based on Gaussian process regression.The influence of joint angles and Euler angles of a six degree-of-freedom serial robot on the modal parameters of the robotic milling system is investigated.Based on this,a posture-related modal pa-rameters prediction model is established to characterize the relationship between modal parameters and robot pos-tures through 245 sets of modal percussion experiments in the machining plane.The model can predict the posture-related modal parameters for all robot postures by a limited number of modal testing experiments.Results show that the proposed method is validated by experiments.

robotic millingposture-dependencefrequency response functions(FRFs)modal parametersGaussian process regression

万敏、李战赢、申传璟、吴晓杰

展开 >

西北工业大学 机电学院,西安 710072

航空工业新乡航空工业(集团)有限公司,新乡 453049

机器人铣削 姿态依赖性 频率响应函数(FRFs) 模态参数 高斯过程回归

2024

航空工程进展
中国航空学会 西北工业大学

航空工程进展

CSTPCD
影响因子:0.207
ISSN:1674-8190
年,卷(期):2024.15(6)