首页|机器学习在航空发动机钛合金研究中的应用进展

机器学习在航空发动机钛合金研究中的应用进展

扫码查看
高性能航空发动机的不断发展对钛合金的综合性能提出更高要求,基于不同合金化元素作用机理的材料成分设计技术是实现钛合金改性的重要途径.对于日益复杂的航空发动机钛合金材料体系,不同元素的相互作用机理及精准设计难度极大.基于Mo当量和密度泛函等传统设计已不能满足未来需求,机器学习成为一种可行且高效的理论工具.本文在介绍钛合金机器学习基本原理和方法的基础上,综述通过机器学习实现航空发动机钛合金成分设计及工艺优化的最新研究成果,重点比较不同机器学习模型在预测力学性能及高温氧化性能上的特点及优势,最后对未来基于主动学习框架设计航空发动机钛合金成分的研究方法进行展望,指出Mo/Al当量设计与机器学习相结合、复杂多组元合金材料简化元素设计等是今后重要发展方向.
Applications of Machine Learning on Aero-Engine Titanium Alloys
The continuous development of high-performance aero-engines has put forward higher requirements for the comprehensive performance of titanium alloys.The composition design of titanium alloys based on the mechanism of different alloying elements is an important means to achieve titanium alloy modification.For the increasingly complex titanium alloy system for aero-engines,the interaction mechanism and precise design of different elements are extremely difficult.Traditional alloy design methods based on Mo equivalent or density functional theory cannot meet future needs,while machine learning has become a feasible and efficient theoretical method.The basic principles and methods of titanium alloy machine learning is introduced in this review,and the latest research achievements on the element design and processing optimization of titanium alloy for aero-engines through machine learning are summarized.This review focuses on the comparison of the characteristics and advantages between different machine learning models in predicting mechanical properties and high-temperature oxidation performance.Finally,a prospect is proposed for the future research methods for designing titanium alloy components in aero-engines based on active learning frameworks.It is supposed that the combination of Mo/Al equivalent design with machine learning,and the simplification design of complex multi-element alloy materials,are important development directions in the future.

Aero-engine titanium alloysMachine learningPerformance predictionAlloy composition optimizationActive learning

弭光宝、孙圆治、吴明宇、李培杰

展开 >

中国航发北京航空材料研究院先进钛合金重点实验室,北京 100095

清华大学新材料国际研发中心,北京 100084

航空发动机钛合金 机器学习 性能预测 合金成分优化 主动学习

中国航发自主创新专项国家自然科学基金"叶企孙"科学基金国家科技重大专项

CXPT-2022-034U2141222J2019-Ⅷ-0003-0165

2024

航空制造技术
北京航空制造工程研究所

航空制造技术

CSTPCD北大核心
影响因子:0.403
ISSN:1671-833X
年,卷(期):2024.67(1)
  • 84