首页|基于多项式混沌的机床几何误差灵敏度分析

基于多项式混沌的机床几何误差灵敏度分析

扫码查看
为解决目前灵敏度分析方法普遍存在的样本需求量大且计算效率不高的问题,提出了一种基于多项式混沌展开的全局灵敏度分析方法.首先,以AC型双转台五轴数控机床为研究对象,根据旋量理论建立了完备的空间误差模型.其次,构建了机床几何误差的多项式混沌展开模型,采用正交匹配追踪实现模型的稀疏化,并给出了基于该方法的 Sobol灵敏度指数.进而,对五轴数控机床几何误差进行了实例分析,测量并统计出41 项误差的近似概率分布,分析了影响各方向位姿误差分量的关键几何误差.通过与蒙特卡洛法和拉丁超立方法进行对比,多项式混沌展开方法的正确性得到验证,且在不降低计算精度的前提下,样本量从 1×105 降低到 1×103,计算时间分别减少 96.8%和98.1%,计算效率显著提高.
Geometric Error Sensitivity Analysis of Machine Tool Based on Polynomial Chaos
In order to solve the problem of large sample demand and low computational efficiency in the current sensitivity analysis method,a global sensitivity analysis method based on polynomial chaos expansion was proposed.Firstly,a complete spatial error model was established based on the screw theory by taking the AC type double turntable five-axis CNC machine tool as the research object.Secondly,the polynomial chaos expansion model of machine tool geometric error was constructed.The orthogonal matching pursuit was used to sparse the model,and the Sobol sensitivity index based on this method was given.Furthermore,the geometric errors of five-axis CNC machine tools were analyzed.The approximate probability distribution of 41 errors are measured and counted,and the key geometric errors affecting the pose error components in each direction are analyzed.Compared with Monte Carlo simulation and Latin hypercube sampling,the correctness of the polynomial chaos expansion method is verified.Under the premise of not reducing the calculation accuracy,the sample size is reduced from 1×105 to 1×103,the calculation time is reduced by 96.8%and 98.1%respectively,and the calculation efficiency is significantly improved.

Five-axis CNC machine toolGeometric errorSensitivity analysisPolynomial chaos expansionScrew theory

郑华林、赵兴、胡腾、魏小建、王小虎

展开 >

西南石油大学,成都 610500

石油天然气装备技术四川省科技资源共享服务平台,成都 610500

五轴数控机床 几何误差 灵敏度分析 多项式混沌展开 旋量理论

四川省自然科学基金四川省科技重大专项

2022NSFSC20022020ZDZX0003

2024

航空制造技术
北京航空制造工程研究所

航空制造技术

CSTPCD北大核心
影响因子:0.403
ISSN:1671-833X
年,卷(期):2024.67(6)