首页|基于分形理论的磨削粗糙表面静摩擦系数模型

基于分形理论的磨削粗糙表面静摩擦系数模型

扫码查看
为更准确地计算磨削粗糙表面的静摩擦系数,本文综合考虑了微凸体相互作用和区域扩展系数的影响,基于分形几何理论和Hertz接触理论,并利用切向接触载荷的基本理论,推导了磨削粗糙表面的真实接触面积、法向总载荷和切向总载荷,建立磨削粗糙表面的静摩擦系数分形模型,通过数值仿真研究了不同法向总载荷、分形维数、高度尺度参数以及材料参数对粗糙表面静摩擦系数的影响规律.仿真结果表明,磨削粗糙表面的静摩擦系数随着法向总载荷的增加而增加,随着高度尺度参数或材料参数的增大而减小;静摩擦系数和分形维数存在非线性关系,当分形维数小于2.65时,静摩擦系数随着分形维数的增大而增大,当分形维数大于2.65时,静摩擦系数随分形维数的增大而减小.最后通过试验和现有模型验证了本文模型的有效性.
A Static Friction Factor Model of Grinding Rough Surface Based on Fractal Theory
In order to predict the static friction of grinding surface more accurately,based on fractal geometry theory,Hertz contact theory and tangential contact load theory,the actual contact area,total normal contact load,and total tangential contact load are deduced and the fractal model of static friction coefficient is established accounting for asperity interaction and the domain extension factor.The effects of total normal contact load,fractal dimension,and height scaling parameter as well as material parameters on the static friction coefficient are investigated.Calculation results show that the static friction coefficient increases with the increase of normal contact load.The static friction coefficient decreases as the height scaling parameters or material parameters increase.The static friction coefficient depends sensitively on the fractal dimension and exhibits nonmonotonic characteristics.The static friction coefficient increases with the increasing of fractal dimension as the fractal dimension is less than 2.65;the static friction coefficient increases with the decreasing of fractal dimension as the fractal dimension is more than 2.65.Finally,the effectiveness of the static friction coefficient is compared with the existing model as well as experimental results.

Grinding rough surfaceAsperity interactionStatic friction factorFractal theoryElastoplastic

成雨、卜颖滨、万珍平、刘章敏

展开 >

华南理工大学,广州 510640

磨削粗糙表面 微凸体相互作用 静摩擦系数 分形理论 弹塑性

国家自然科学基金资助项目广东省重点领域研发计划项目湛江市产学研合作项目

521754022021B01012200032021A05026

2024

航空制造技术
北京航空制造工程研究所

航空制造技术

CSTPCD北大核心
影响因子:0.403
ISSN:1671-833X
年,卷(期):2024.67(7)
  • 19