首页|含孔纤维增强镁合金层合板制备和拉伸时渐进损伤模式研究

含孔纤维增强镁合金层合板制备和拉伸时渐进损伤模式研究

扫码查看
通过试验和数值模拟仿真的方法研究了玻璃纤维/环氧树脂增强镁合金层合板在不同孔径影响下的损伤演化和最终损伤模式,利用扫描电子显微镜分析了试件断口微观损伤模式.同时改进了纤维增强镁合金层合板的制备流程.结果表明,通过对AZ31镁合金层板进行表面处理能够有效减少分层效应,试件抗拉强度为 347.62 MPa,相较于未处理过的试件提升了 11.33%,微观层间结合形貌更为紧密、均匀.随着孔径的增大,试件拉伸剩余强度逐渐降低.纤维增强镁合金层合板在渐进损伤失效过程中,呈现从"X形状"逐渐向"漏斗形状"扩展.层合板失效模式为金属层韧脆性断裂、纤维层拉伸断裂和层间分层为主的复杂混合失效模式.试验和有限元数值仿真结果吻合较好,验证了数值仿真模型的有效性,能够为工程实际上的应用提供参考.
Study on Preparation and Progressive Damage Mode of Open-Hole Fiber Reinforced Magnesium Alloy Laminates During Tensile Process
The damage evolution and final damage mode of glass fiber/epoxy resin reinforced magnesium alloy laminates with different pore sizes were studied by experiments and numerical simulation,and the microscopic damage mode of fracture was analyzed by scanning electron microscopy.At the same time,the fabrication process of fiber-reinforced magnesium alloy laminates was improved.The results show that the surface treatment of AZ31 magnesium alloy can effectively reduce the delamination effect,and the specimen tensile strength is 347.62 MPa,compared with the untreated specimens which is improved by 11.33%,the interlayer microstructure morphology is more compact and uniform.With the increase of the pore size,the residual tensile strength decreases gradually.Fiber reinforced magnesium alloy laminates gradually expand from"X shape"to"funnel shape"in the progressive damage failure process.The failure modes of laminates are complicated mixed failure modes,which are mainly ductile brittle fracture of metal layer,tensile fracture of fiber layer and interlayer delamination.The experimental results are nearly consistent with the finite element numerical simulation results,which verifies the validity of the numerical simulation model and provides a reference for practical engineering applications.

Fiber metal laminatesFailure criterionNumerical simulationHole diameterResidual intensityProgressive damage mode

林中照、盛冬发、方雨汀、刘琳、李忠君

展开 >

西南林业大学土木工程学院,昆明 650224

南京新核复合材料有限公司,南京 211200

纤维金属层合板 失效准则 数值模拟 孔径 剩余强度 渐进损伤模式

国家自然科学基金云南省教育厅科学研究基金

118620232023Y0772

2024

航空制造技术
北京航空制造工程研究所

航空制造技术

CSTPCD北大核心
影响因子:0.403
ISSN:1671-833X
年,卷(期):2024.67(10)
  • 7