首页|面向某太阳能无人机机翼的梁结构设计制造与验证

面向某太阳能无人机机翼的梁结构设计制造与验证

扫码查看
太阳能无人机机翼具有典型的低翼载荷、大柔度、大展弦比特征,翼梁作为机翼的主承力结构,其承载能力与重量要求十分严格.如何提高翼梁结构承载效率,达到承载能力与重量的综合平衡,并实现大尺寸复合材料翼梁的整体化设计与制造,是太阳能无人机翼梁结构研究中的关键技术问题.本文首先针对太阳能无人机复合材料翼梁设计提出了一种快速选型及优化设计方法,该方法通过计算梁不同截面的承载能力来确定设计参数,同时考虑了铺层对称性、应变约束及稳定性约束,能够避免在方案阶段建立全机有限元模型并进行反复迭代计算,从而提高了翼梁结构的设计效率.其次,针对大尺寸复合材料圆管梁结构,提出了一种新型的专用成型方法,基于阴模成型实现了翼梁整体化制造并保证了制件成型质量,为类似的大型复合材料结构的制造工艺提供了参考.最后,开展了 2 m量级圆管梁静力试验,典型截面的应变结果与设计结果误差不超过10%,验证了此快速优化设计方法的适用性.
Structural Design,Manufacturing and Verification of Composite Material Wing Beam for Solar-Powered UAV
Solar-powered drones are equipped with wings that possess typical characteristics of low wing loading,high flexibility,and high aspect ratio.As the main load-bearing structure of the wing,the wing spar has very strict requirements on its load capacity and weight.The key technical issues in the research of solar-powered drone spar structures were how to improve the load efficiency of the spar structure,achieve a comprehensive balance between load capacity and weight,and realize the integrated design and manufacturing of large-scale composite material spars.This paper proposes a fast structural configuration selection and optimization design method for the composite material spar design of solar-powered drones.This method determines the design parameters by calculating the load capacity of the spar cross-section,and considers the ply symmetry,strain constraint,and stability constraint at the same time.It can avoid building a full-scale finite element model and performing iterative calculations at the scheme stage,thus improving the design efficiency of the spar structure.Secondly,for the large-scale composite material tubular spar structure,a dedicated molding method is proposed,which realizes the integrated manufacturing of the spar and ensures the quality of the molded parts,providing a reference for the manufacturing process of similar large-scale composite material structures.Finally,a static test of a 2 m-scale tubular spar is carried out,and the strain results of the typical cross-section are within 10%error of the design results,verifying the applicability of this fast optimization design method.

Composite materialsWing sparSolar-powered UAVStructural designFinite element methodLay up

齐朝辉、朱胜利、杨殿国、王晓阳

展开 >

航空工业第一飞机设计研究院,西安 710089

西北工业大学,西安 710129

复合材料 翼梁 太阳能无人机 结构设计 有限元法 铺层

2024

航空制造技术
北京航空制造工程研究所

航空制造技术

CSTPCD北大核心
影响因子:0.403
ISSN:1671-833X
年,卷(期):2024.67(14)