首页|轻质宽带吸声超材料设计及3D打印

轻质宽带吸声超材料设计及3D打印

扫码查看
共振型吸声超材料具有优异的噪声控制能力,作为一种轻量化结构在航空领域具有巨大应用潜力,但在低频宽带噪声控制方面仍存在挑战.为了促进超材料的低频与宽带吸声协同设计,提出了一种带三角形背腔的穿孔板共振吸声超材料设计方法并对其声学特性进行了研究.该超材料将蜂窝腔分为 6 个独立的三角形单元,每个三角单元中心布置微穿孔,利用单元间的耦合效应实现宽带吸声.研究了孔径、孔深和腔体高度对吸声系数和峰值频率的影响,并从复频率平面零极点分布与能量耗散两方面分析了声学超材料宽带吸声的多单元耦合机制.根据单元及其耦合特性设计的低频宽带吸声超材料,厚度为 50 mm,仅为最长工作波长的 1/22,在 309~464 Hz低频范围内实现80%以上的吸收效果;等效密度约 0.31 g/cm3,实现了材料轻量化.采用光固化成形技术制备了该结构并在阻抗管中通过试验验证了其吸声性能.这种轻量化的吸声超材料设计为装备的低频噪声控制提供了支撑.
Design and 3D Printing of Lightweight Broadband Sound Absorption Metamaterials
Resonant sound absorption metamaterials have excellent noise control capability and great potential for application as a lightweight aerostructure,but challenges remain in low-frequency broadband noise control.In order to promote the synergistic design of low-frequency and broadband sound absorption of metamaterials,a design method for resonant sound absorption metamaterials with a triangular back cavity in a perforated plate is proposed and the acoustic properties are investigated.The metamaterial divides the honeycomb cavity into six independent triangular units,and microperforations are arranged in the center of each triangular unit to achieve broadband sound absorption by using the coupling effect between the units.The effects of hole diameter,depth and height on the absorption coefficient and peak frequency are investigated,and the multi-unit coupling mechanism of the acoustic metamaterial's broadband sound absorption is analyzed in terms of the zero-pole distribution of the complex frequency plane and the energy dissipation of the metamaterial.The low-frequency broadband sound absorption metamaterials designed according to the units and their coupling characteristics achieve more than 80%absorption in the low-frequency range of 309-464 Hz,with a thickness of 50 mm,which is only 1/22 of the longest working wavelength,and an equivalent density of about 0.31 g/cm3,which realizes materials'lightweighting.The structure was prepared by light-curing molding technology and its acoustic performance was experimentally verified in an impedance tube.This lightweight sound absorption metamaterial design provides support for low-frequency noise control of equipment.

Helmholtz resonant cavitySound absorption metamaterialLow-frequencyBroadband sound absorption3D printing

梁庆宣、闫欣、吕佩瑶、李涤尘

展开 >

西安交通大学精密微纳制造技术全国重点实验室,西安 710049

Helmholtz共振腔 声学超材料 低频 宽带吸声 3D打印

2024

航空制造技术
北京航空制造工程研究所

航空制造技术

CSTPCD北大核心
影响因子:0.403
ISSN:1671-833X
年,卷(期):2024.67(19)