首页|基于激光喷丸几何特征的固有应变反求方法

基于激光喷丸几何特征的固有应变反求方法

扫码查看
针对激光喷丸固有应变反求问题,以固有应变理论为基础,建立了基于几何特征的固有应变反求的方法.基于有限元理论建立了激光喷丸固有应变与变形位移之间的控制方程;以固有应变和变形之间的控制方程为基础,结合激光喷丸变形位移与动态仿真初始固有应变,建立了固有应变反求优化模型.在不同能量下进行激光喷丸试验,反求固有应变,并基于变形和残余应力对反求结果进行验证.结果表明,变形几何特征和动态冲击初始固有应变相结合,可以高效准确地实现固有应变反求.
Inverse Method of Eigenstrain Based on Geometric Characteristics of Laser Peening
In order to solve the laser peening eigenstrain inversely,based on the numerical theory of eigenstrain,an inverse method for eigenstrain based on geometric characteristics was established.Based on the finite element theory,the control equation between the eigenstrain and deformation of laser peening was established.On the basis of the control equation,an optimization model for inverse of eigenstrain was built by combining the deformation and the initial eigenstrain obtained by the dynamic analysis model.The eigenstrain was solved inversely from laser peening experiments carried out under different energies,and the results were verified based on the deformation and residual stress.The results show that the eigenstrain can be efficiently and accurately inversely solved by fusing of initial eigenstrain from dynamic model and the geometric characteristics of deformation.

Laser peeningEigenstrainInverse methodResidual stressGeometric characteristic

薛贞浩、罗明生、胡永祥

展开 >

上海交通大学,上海 200240

季华实验室,佛山 528200

激光喷丸 固有应变 反求方法 残余应力 几何特征

2024

航空制造技术
北京航空制造工程研究所

航空制造技术

CSTPCD北大核心
影响因子:0.403
ISSN:1671-833X
年,卷(期):2024.67(21)