首页|基于改进型区域生长法的Halcon焊接缺陷DR图像自动识别

基于改进型区域生长法的Halcon焊接缺陷DR图像自动识别

扫码查看
为解决当前人工焊缝缺陷检测过程中存在的检测效率低、缺陷判定存在主观性的问题,提出了一种基于Halcon的焊缝缺陷图像检测与识别方案.将X射线拍摄的焊缝图像预处理后用高频增强显示鱼鳞纹部分,再通过均值滤波和二值化提取出ROI.在普通区域生长法中加入判别条件,自动选择最合适的参数识别气孔和钨夹渣,改进普通开运算卷积核以识别出未焊透部分.相较于机器学习,本文方法无需使用大量训练集.本次试验共检测 222张图像,检测精度为 89.19%.结果表明,焊接缺陷DR图像自动识别对提高企业的零部件检测效率及质量有重要的意义,计算机识别焊缝缺陷可排除人工缺陷判定中主观因素造成的误差,并能够长时间、高强度地识别焊缝缺陷;可实现对于焊缝缺陷的实时保存与远距离传输.
DR Image Automatic Identification of Halcon Weld Defects Based on Improved Regional Growth Method
To solve the problems of low detection efficiency and subjectivity in defect identification during the current manual welding defect detection process,a welding defect image detection and recognition scheme based on Halcon was proposed.The scheme involves preprocessing X-ray images of welding seams,enhancing the display of fish scale patterns through high-frequency enhancement,and extracting the ROI through mean filtering and binarization.Discrimination conditions have been added to the ordinary region growing algorithm to automatically select the most suitable parameters for identifying pores and tungsten slag.The ordinary opening convolution kernel has also been improved to identify unfused parts.Compared with machine learning,this approach does not require a large number of training sets.In experiments,a total of 222 images were detected with an accuracy of 89.19%.The results show that the welding defects DR image automatic identification to improve the efficiency and quality of enterprise parts inspection is of great significance:The computer recognition of weld defects can eliminate the error caused by subjective factors in the workers'determination of defects;Can be a long time,high-intensity identification of weld defects;Can realize real-time preservation and long-distance transmission of weld defects.

Regional growth methodDetection of internal weld defectsTarget detectionHalconImage processing

徐学谦、李克铭、徐开源、杨洪刚、陈云霞

展开 >

上海电机学院机械学院,上海 201306

中车长春轨道客车股份有限公司,长春 130062

区域生长法 焊缝内部缺陷检测 目标检测 Halcon 图像处理

2024

航空制造技术
北京航空制造工程研究所

航空制造技术

CSTPCD北大核心
影响因子:0.403
ISSN:1671-833X
年,卷(期):2024.67(23)