首页|航空器导航系统飞参预测置信度评价方法研究

航空器导航系统飞参预测置信度评价方法研究

扫码查看
为了提高航空器的安全性能,需量化飞参预测过程中的不确定性,因此本文提出了基于预测模型的置信度评价流程.针对航空器导航系统中的飞参数据,采用卷积神经网络开发预测算法,对选定的飞参数据进行预处理和训练,实现高精度的目标飞参预测.综合考虑了模型搭建中的认知不确定性和数据层面的偶然不确定性,采用模型集成的方法来捕获认知不确定性,通过双头网络捕获数据中的偶然不确定性.在此基础上,构建多源不确定性模型,实现了飞参预测模型的置信度评价.经过试验测试,在正常飞参数据中植入噪声模拟实际工况的不确定性,结果显示所提置信度评价方法能有效地表示飞参预测结果的准确性,提高了航空器飞行决策过程中的安全性与可靠性.
Research on Confidence Evaluation Method of Flight Parameter Prediction in Aircraft Navigation System
To enhance the safety performance of aircraft,a confidence assessment process based on predictive modeling is proposed to quantify the uncertainty in flight parameter prediction.A convolutional neural network was employed to develop a prediction algorithm for flight parameter data in aircraft navigation systems.The selected flight parameter data was preprocessed and trained to achieve high-precision target parameter prediction.The modeling process incorporated both epistemic uncertainty in model construction and aleatoric uncertainty in the data by using ensemble methods to capture epistemic uncertainty and employing a dual-head network to capture aleatoric uncertainty.Based on this,a multi-source uncertainty model was constructed to evaluate the confidence of the flight parameter prediction model.Experimental testing,including the introduction of noise into normal flight parameter data to simulate real-world conditions,demonstrates that the proposed confidence assessment method effectively represents the accuracy of the flight parameter prediction results,and improves the safety and reliability of aircraft flight decision-making process.

aircraftflight parameterneural networksuncertainty analysisconfidence

黄梦婵、钟杰、苗强

展开 >

四川大学,四川 成都 610065

航空器 飞行参数 神经网络 不确定性分析 置信度

航空科学基金

201905019001

2024

航空科学技术
中国航空研究院

航空科学技术

影响因子:0.24
ISSN:1007-5453
年,卷(期):2024.35(2)
  • 3