首页|全电高速无人直升机电池风冷散热能力研究

全电高速无人直升机电池风冷散热能力研究

扫码查看
全电高速无人直升机存在电池功率大、内部空间小等特点,对内部电池的散热能力提出了更高的要求.为研究全电高速无人直升机内部电池模组的散热性能,本文首先利用计算流体力学(CFD)计算不同通风口布置形式下全电高速无人直升机各通风口的流动特性、进气量和阻力;随后基于外流场的计算结果,计算全电高速无人直升机机舱内各电池模组在直升机前飞和悬停状态下的表面散热能力和舱内流场,并分析表面散热能力随进气口格栅下偏角度的变化.计算结果表明,在舱内气流速度和湍流度的共同作用下,直升机舱内上、下层设备舱内电池模组在前飞和悬停状态下呈现不同的变化规律;最后基于各电池模组表面散热能力随进气口格栅下偏角度的变化规律,得出下层通风口进气格栅下偏80°,上层通风口进气格栅下偏20°时,舱内电池模组散热能力最强,为全电高速无人直升机风冷散热方案提供参考依据.
Research on Air-cooling Effectiveness for the Battery of Electric High-speed Unmanned Helicopter
Electric unmanned helicopter need better heat dissipation on account of high battery power and small internal space.The objective of this paper is to optimize heat dissipation performance.CFD was used to calculate the air intake and flow characteristics of various air inlet in the infinite flow field.Based on the above results,the surface heat dissipation performance and the cabin flow field in forward flight and hovering were calculated,and the variation of surface heat dissipation performance with the deflection angle of air inlet flow was analyzed.Under the combined action of the cabin airflow velocity and turbulence,the heat dissipation performance of the battery pack in upper and lower equipment compartment presents different rules.Based on the calculation,the surface heat dissipation performance is the strongest when the deflection angle of upper air inlet flow is 20°and the deflection angle of lower air inlet flow is 80°.

electric high-speedunmanned helicopterCFDbatteryheat dissipation performance

周琪琛、李春华、张威、赵悦、侯瑞

展开 >

中国直升机设计研究所,江西 景德镇 333001

全电高速 无人直升机 计算流体力学 电池 表面散热能力

2024

航空科学技术
中国航空研究院

航空科学技术

影响因子:0.24
ISSN:1007-5453
年,卷(期):2024.35(4)
  • 5