首页|基于改进粒子群优化算法的机身室内指纹定位研究

基于改进粒子群优化算法的机身室内指纹定位研究

扫码查看
飞机结构强度测试地面试验是飞机研制中不可或缺的环节,对保障人员安全、提升性能、降低成本具有重要意义.为在室内测试环境中提高测试效率并获取较高的机身定位精度性能,本文将双变异粒子群优化(DMPSO)算法融入室内无线定位技术,提出一种基于改进粒子群优化算法的飞机机身室内指纹定位方法,并通过试验验证其有效性.结果表明,相比传统的粒子群优化(PSO)算法和极大似然估计(MLE)算法,本文所提出的DMPSO定位方案在平均定位误差方面表现出色,平均定位误差为0.4341m,显著优于PSO的0.7263m和MLE的0.8089m.因此,DMPSO方法具有更高的定位精度和稳定性.本文的研究成果不仅为飞机结构强度测试地面试验提供了一种新的思路,同时也为室内无线定位技术提供了一种有效的定位精度提升方案.
Fuselage Indoor Fingerprint Localization Method Based on Improved Particle Swarm Optimization Algorithm
Ground testing for aircraft structural strength is a critical part of aircraft manufacturing.It is of great significance to safeguard the safety of personnel,enhance the performance,and reduce the cost.In order to improve the testing efficiency and obtain a higher positioning accuracy in indoor testing environment,this paper integrates the dual variational particle swarm optimization(DMPSO)algorithm into indoor wireless positioning,proposes an indoor fingerprint positioning method for aircraft fuselage structure strength test based on improved particle swarm optimization algorithm,and verifies its validity through experiments.The results show that compared with the traditional particle swarm optimization(PSO)algorithm and the maximum likelihood estimation(MLE)algorithm,the DMPSO proposed in this paper performs well in terms of average localization error(0.4341m),which is significantly better than that of the PSO of 0.7263m and MLE of 0.8089m.Therefore,the DMPSO method has higher localization accuracy and stability.The research of this paper not only provides a new approach for aircraft structural strength testing,but also provides an effective solution to improve the positioning accuracy of indoor wireless positioning.

aircraft structure strength testindoor localizationImproved particle swarm optimization algorithmDMPSOpositioning error

毕杨、张杨梅、刘坤、李军芳

展开 >

西安航空学院,陕西 西安 710077

飞行器多模态异构信息智能感知与处理技术陕西省高等学校重点实验室,陕西 西安 710077

机身结构强度测试 室内定位 改进粒子群优化算法 DMPSO 定位误差

2024

航空科学技术
中国航空研究院

航空科学技术

影响因子:0.24
ISSN:1007-5453
年,卷(期):2024.35(12)