中国航空学报(英文版)2024,Vol.37Issue(2) :123-136.DOI:10.1016/j.cja.2023.09.002

Aircraft parameter estimation using a stacked long short-term memory network and Levenberg-Marquardt method

Zhe HUI Yinan KONG Weigang YAO Gang CHEN
中国航空学报(英文版)2024,Vol.37Issue(2) :123-136.DOI:10.1016/j.cja.2023.09.002

Aircraft parameter estimation using a stacked long short-term memory network and Levenberg-Marquardt method

Zhe HUI 1Yinan KONG 2Weigang YAO 3Gang CHEN4
扫码查看

作者信息

  • 1. School of Aerospace Science and Technology,Xidian University,Xi'an 710071,China
  • 2. Computation Aerodynamics Institution,China Aerodynamics Research and Development Center,Mianyang 621000,China
  • 3. Faculty of Computing,Engineering and Media,De Montfort University,Leicester LE1 9BH,United Kingdom
  • 4. School of Aerospace Engineering,Xi'an Jiaotong University,Xi'an 710049,China
  • 折叠

Abstract

To effectively estimate the unknown aerodynamic parameters from the aircraft's flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)network model and the Levenberg-Marquardt(LM)method.The stacked LSTM network model was designed to realize the aircraft dynamics modeling by utilizing a frame of nonlinear functional mapping based entirely on the measured input-output data of the aircraft system without requiring explicit postulation of the dynamics.The LM method combines the already-trained LSTM network model to optimize the unknown aerodynamic param-eters.The proposed method is applied by using the real flight data,generated by ATTAS aircraft and a bio-inspired morphing Unmanned Aerial Vehicle(UAV).The investigation reveals that for the two different flight data,the designed stacked LSTM network structure can maintain the effi-cacy of the network prediction capability only by appropriately adjusting the dropout rates of its hidden layers without changing other network parameters(i.e.,the initial weights,initial biases,number of hidden cells,time-steps,learning rate,and number of training iterations).Besides,the proposed method's effectiveness and potential are demonstrated by comparing the estimated results of the ATTAS aircraft or the bio-inspired morphing UAV with the corresponding reference values or wind-tunnel results.

Key words

Parameter estimation/LSTM network model/LM method/Aerodynamic parameters/Flight data/Aircraft dynamics modeling/Network prediction capabil-ity/Network parameters

引用本文复制引用

基金项目

National Natural Science Foundation of China(52192633)

Natural Science Foundation of Shaanxi Province,China(2022JC-03)

Fundamental Research Funds for the Central Universities,China(XJSJ23164)

出版年

2024
中国航空学报(英文版)
中国航空学会

中国航空学报(英文版)

CSTPCDEI
影响因子:0.847
ISSN:1000-9361
参考文献量1
段落导航相关论文