Abstract
The joined-wing configuration reduces induced drag and structural weight by connecting the rear wing to the front wing.In addition,the rear wing can replace the role of the horizontal tail of a conventional aircraft,thus eliminating the aerodynamic drag and weight associated with the horizontal tail.This particular shape creates a highly coupled relationship between aerodynamics and structure,which must be fully considered during the overall design process to enhance aircraft performance.In this research,an aero-structural design model of the joined-wing aircraft is con-structed based on high-fidelity computational fluid dynamics and structural finite element methods.The model is able to obtain accurate aerodynamic loads for the non-planar wing and to simulate the statically indeterminate structure of the closed wing configuration.The influence of the joined-wing shape parameters on the aerodynamic and structural disciplines,as well as the influence of geomet-ric nonlinear characteristics,deformation constraints and buckling constraints on the structural weight are all taken into consideration.The model is applied to complete the aero-structural design optimization of a high-altitude long-endurance joined-wing aircraft,and wind tunnel tests are con-ducted.The test results verify the credibility of the design model proposed and the validity of the design environment.
基金项目
中央高校基本科研业务费专项(56XCA2205402)