Abstract
Maneuvering flight substantially affects the dynamic behavior of rotors;particularly,such flight may cause rubbing between a rotor and stator,which is one of the most serious damages in aircraft engines.In this paper,a nonlinear dynamic model for describing the dynamic character-istics of a rub-impact rotor system during maneuvering flight is established based on the Lagrange equations.Subsequently,numerical simulations employing the Newmark method are performed,delving into the detailed discussion of the influence of parameters such as rotational speed and maneuvering flight on the transient and steady-state responses of the rotor system.The effect mech-anism of maneuver load and its coupling with rub impact is revealed.The results show that the impact response induced by maneuvering flight is more obvious in the subcritical state than in the supercritical state.The additional stiffness and damping are also induced;in particular,the additional damping has a coupling effect.Moreover,the rub impact imposes an additional con-straint on the rotor system,thereby weakening the influence of the maneuver load and becoming the major factor that determines the dynamic behavior of the rotor system at high speeds.
基金项目
National Natural Science Foundation of China(12202229)
Science Center for Gas Turbine Project,China(P2022-B-Ⅲ-002-001)
Scientific Research Projects of Tianjin Education Commission,China(2020KJ018)
Scientific Research Projects of Tianjin Education Commission,China(2020KJ060)