中国航空学报(英文版)2024,Vol.37Issue(12) :245-257.DOI:10.1016/j.cja.2024.06.026

Dynamic Gaussian process regression for spatio-temporal data based on local clustering

Binglin WANG Liang YAN Qi RONG Jiangtao CHEN Pengfei SHEN Xiaojun DUAN
中国航空学报(英文版)2024,Vol.37Issue(12) :245-257.DOI:10.1016/j.cja.2024.06.026

Dynamic Gaussian process regression for spatio-temporal data based on local clustering

Binglin WANG 1Liang YAN 1Qi RONG 1Jiangtao CHEN 2Pengfei SHEN 2Xiaojun DUAN1
扫码查看

作者信息

  • 1. College of Science,National University of Defense Technology,Changsha 410073,China
  • 2. China Aerodynamics Research and Development Center,Mianyang 621000,China
  • 折叠

Abstract

This paper introduces techniques in Gaussian process regression model for spatio-temporal data collected from complex systems.This study focuses on extracting local structures and then constructing surrogate models based on Gaussian process assumptions.The proposed Dynamic Gaussian Process Regression(DGPR)consists of a sequence of local surrogate models related to each other.In DGPR,the time-based spatial clustering is carried out to divide the systems into sub-spatio-temporal parts whose interior has similar variation patterns,where the temporal information is used as the prior information for training the spatial-surrogate model.The DGPR is robust and especially suitable for the loosely coupled model structure,also allowing for parallel computation.The numerical results of the test function show the effectiveness of DGPR.Further-more,the shock tube problem is successfully approximated under different phenomenon complexity.

Key words

Gaussian processes/Surrogate model/Spatio-temporal systems/Shock tube problem/Local modeling strategy/Time-based spatial clustering

引用本文复制引用

出版年

2024
中国航空学报(英文版)
中国航空学会

中国航空学报(英文版)

CSTPCDEI
影响因子:0.847
ISSN:1000-9361
段落导航相关论文