首页|行星探测用柔性降落伞跨/超声速气动特性及耦合机理

行星探测用柔性降落伞跨/超声速气动特性及耦合机理

扫码查看
中国针对金星、木星等行星的星际探测新征程已经开启,且正在论证之中.然而,这些行星均具有稠密的大气和更高的大气压力,这与地球、火星的大气环境有较大区别.在以往成功的行星探测中发现,此类复杂的行星大气环境中的气动减速过程需要多级降落伞来完成,且需在跨/超声速条件下开伞和工作,同时第一级引导伞的名义直径会明显小于主伞,也小于前体直径,不同尺寸的两级伞与前体之间的流固耦合机理及其气动特性至今尚不明确,同时相关研究报道亦极少.本文基于稠密大气行星探测任务中适用的锥形带条伞和盘缝带伞,采用浸入边界方法研究不同行星大气环境中柔性降落伞工作过程的流固耦合机理,深入考察不同来流马赫数、伞型、大气成分及参数与直径比影响下的流固耦合特性.研究结果发现:土卫六大气环境中,盘缝带伞(直径比0.3)在跨声速时进行稳降,随着时间变化,伞衣的投影面积逐渐增大,阻力系数在马赫数1.5时达到最大,但其波动变化随着马赫数的增大而单调增大.另外,在马赫数为0.95、直径比0和1时伞衣均出现了极为剧烈的摆动现象.相比之下,木星大气环境中,跨声速条件下锥形带条伞伞衣随着时间推进,投影面积变化越来越小.阻力系数及其波动会随着马赫数增大而单调增大,横向力系数及其波动程度在马赫数1.5时出现最大.最后比较土卫六、金星和木星大气环境中的降落伞气动表现,发现木星大气环境中锥形带条伞性能最佳,阻力系数较大,且稳定性较好.
Transonic/supersonic aerodynamic characteristics and fluid-structure interaction mechanism of flexible parachutes for planetary exploration
Further missions of China's planetary exploration projects to the Venus,the Jupiter and others have been initiated,and the key technical research is underway.However,these planets have significantly different atmospheric environments from those of the Earth and the Mars,with dense atmospheres and higher atmospheric pressures.Pre-vious successful planetary explorations reveal that the aerodynamic deceleration process in such complex planetary at-mospheric environments requires multi-stage parachutes and transonic/supersonic conditions for parachute opening and operation.Meanwhile,the nominal diameter of the first stage guide parachute is significantly smaller than that of the main parachute and the forebody diameter.With few related research reports,the fluid structure interaction mechanism and the aerodynamic characteristics between two-stage parachutes of different sizes and the forebody are still unclear.In this research,based on conical ribbon parachutes and disk-band-gap parachutes suitable for dense at-mospheric planetary exploration missions,the fluid structure interaction mechanism of flexible parachutes in different planetary atmospheric environments is numerically studied using the immersion boundary method,and the aerody-namic characteristics with different freestream Mach numbers,canopy types,atmospheric components,and param-eter to diameter ratios are investigated.Results show that in the atmospheric environment of the Titan,the conical rib-bon canopy(with a diameter ratio of 0.3)steadily descends at transonic speeds,and the projected area of the canopy increases over time.The drag coefficient reaches its maximum at Mach number 1.5,while its fluctuation monotoni-cally increases with the increase of the Mach number.In addition,at Mach number 0.95,the canopies exhibit ex-tremely severe oscillation when the diameter ratios are 0 and 1.In contrast,in the atmospheric environment of the Ju-piter,when the freestream Mach number is transonic,the change in the projected area of the conical ribbon canopy becomes smaller over time.The drag coefficient and its fluctuation will monotonically increase with the increase of the Mach number,and the lateral force coefficient and its fluctuation reach their maximum at Mach number 1.5.Finally,a comparison is made between the stable descent process of parachutes in the atmospheric environments of the Titan,the Venus,and the Jupiter,showing that the conical ribbon canopy in the Jupiter atmospheric environment has the best performance,a larger drag coefficient,and better stability.

deep space explorationtransonic/supersonic parachutesaerodynamic characteristicsfluid-structure interaction mechanismaerodynamic decelerating technology

贾贺、蒋伟、包文龙、徐欣、荣伟、余莉

展开 >

南京航空航天大学 航空学院,南京 210016

北京空间机电研究所,北京 100094

深空探测 跨/超声速降落伞系统 气动特性 流固耦合机理 气动减速技术

2025

航空学报
中国航空学会 北京航空航天大学

航空学报

北大核心
影响因子:1.228
ISSN:1000-6893
年,卷(期):2025.46(1)