首页|自适应多样性黄金正弦搜索改进的人工兔优化算法

自适应多样性黄金正弦搜索改进的人工兔优化算法

扫码查看
本文针对人工兔优化算法在求解复杂优化问题时存在初始化种群多样性低、容易陷入局部最优等问题,提出了自适应多样性黄金正弦搜索改进的人工兔优化算法.首先,在初始化过程中,本文引入了拟蒙特卡洛法中的Halton序列数,增加初始种群的多样性;而后,为了提高人工兔优化算法在迭代后期的搜索能力,避免算法陷入局部最优,本文提出了自适应多样性黄金正弦搜索策略的算子.将改进后的人工兔优化算法与其它4 种算法在8 个标准测试函数和2 个工程应用的测试函数上进行对比测试,结果表明,本文改进的算法在计算性能上实现了明显的提升.
A Modified Artificial Rabbit Optimization with Adaptive Diversity Golden Sine Search
This paper proposes an improved artificial rabbit optimization algorithm based on adaptive diversi-ty golden sine search to address the problems of low initial population diversity and susceptibility to local optima in solving complex optimization problems.Firstly,this paper introduces the number of Halton sequences of the quasi Monte Carlo method to increase the diversity of the initial population.Subsequently,in order to improve the search ability of the artificial rabbit optimization algorithm in the later stage of iteration and avoid the algo-rithm falling into local optima,this paper proposes an operator for the adaptive diversity golden sine search strat-egy.The improved artificial rabbit optimization algorithm is compared with four other algorithms on 8 benchmark functions and 2 engineering application benchmark functions,and the results show that the improved algorithm in this paper achieves significant improvement in computational performance.

artificial rabbits optimizationadaptive diversitygolden sine searchfunction optimization

罗健夫

展开 >

呼伦贝尔学院 内蒙古 海拉尔 021008

人工兔优化算法 自适应多样性 黄金正弦搜索 函数优化

2024

呼伦贝尔学院学报
呼伦贝尔学院

呼伦贝尔学院学报

影响因子:0.211
ISSN:1009-4601
年,卷(期):2024.32(3)
  • 2