首页|基于TSO-ELM的广东省电力需求预测方法

基于TSO-ELM的广东省电力需求预测方法

扫码查看
针对极限学习机(extreme learning machine,ELM)的输入层权值以及隐含层偏值的不同取值对预测结果影响较大和现有的预测模型对广东省电力需求预测精度不高的问题,提出一种基于金枪鱼群优化(tuna swarm optimization,TSO)算法优化ELM得到最优数值,构建TSO-ELM预测模型的方法.将2008-2018年广东省的6个影响因素和电力需求量数据进行归一化处理之后构建预测模型,对2019-2021年广东省的电力需求量进行预测.仿真结果表明,与SVM、BP、ELM和GWO-ELM这4种预测模型相比较,TSO-ELM预测模型具有更高的预测精度.
Guangdong power demand forecasting method based on TSO-ELM
Aiming at the problem that the different values of the weight of the input layer and the bias of the hidden layer of the extreme learning machine(ELM)have a great influence on the prediction results and the existing prediction model has low prediction accuracy for the power demand prediction of Guangdong Province,a method based on the tuna swarm optimization(TSO)algorithm is proposed to optimize the ELM to obtain the optimal value and construct the TSO-ELM prediction model.After normalizing the six influencing factors and power demand data of Guangdong Province from 2008 to 2018,a prediction model is constructed to predict the power demand of Guangdong Province from 2019 to 2021.The simulation results show that compared with the four prediction models of SVM,BP,ELM and GWO-ELM,the TSO-ELM prediction model has higher prediction accuracy.

tuna swarm optimization algorithmextreme learning machinepower demand forecastingmean absolute percentage errorroot mean square relative error

陈晓华、吴杰康、龙泳丞、王志平、蔡锦健、杨宜豪、周旭展

展开 >

广东电网有限责任公司湛江供电局,广东 湛江 524005

广东工业大学 自动化学院,广州 510006

东莞理工学院电子工程与智能化学院,广东东莞 523808

金枪鱼群优化算法 极限学习机 电力需求预测 平均绝对百分比误差 均方根相对误差

国家自然科学基金国家高技术研究发展计划(863计划)广东省基础与应用基础研究基金富华电子智能制造和电力电子技术服务项目

507670012007AA04Z1972019B151512007620221800500253

2024

黑龙江电力
黑龙江省电机工程学会 黑龙江省电力科学研究院

黑龙江电力

影响因子:0.359
ISSN:1002-1663
年,卷(期):2024.46(1)
  • 9