首页|基于IAOA优化SVM的变压器故障识别方法

基于IAOA优化SVM的变压器故障识别方法

扫码查看
针对电力变压器故障类型只有小样本数据难以准确识别的问题,提出一种基于改进算术优化算法(improved arithmetic optimization algorithm,IAOA)优化支持向量机(support vector machine,SVM)的变压器故障识别方法.该方法通过Piecewise混沌映射对算术优化算法进行改进,可以避免算法陷入局部最优解,利用IAOA对SVM参数进行优化,解决了SVM参数选择困难的问题,进而构造IAOA-SVM分类器对变压器故障进行识别.仿真结果表明,相比较于SVM和AOA-SVM分类器,IAOA-SVM分类器的识别性能最优,对5 种、7 种变压器故障类型的识别准确率分别为94.32%、99.26%,验证了所提方法的准确性.
Transformer fault identification method based on IAOA optimized SVM
Aiming at the problem that it is difficult to accurately identify the fault types of power transformers with only small sample data,a transformer fault identification method based on improved arithmetic optimization algorithm(IAOA)optimized support vector machine(SVM)is proposed.This method improves the arithmetic optimization algorithm by Piecewise chaotic mapping to avoid the algorithm falling into the local optimal solution.The IAOA is used to optimize the SVM parameters to solve the problem of SVM parameter selection,and then the IAOA-SVM classifier is constructed to identify the transformer fault.The simulation results show that the IAOA-SVM classifier has the best recognition performance compared with SVM and AOA-SVM classifiers.The recognition accuracy of 5 and 7 transformer fault types is 94.32%and 99.26%respectively,which verifies the accuracy of the proposed method.

power transformerfault identification and classificationPiecewise chaotic maparithmetic optimization algorithmsupport vector machine

陈晓华、吴杰康、蔡锦健、王志平、龙泳丞、陈志鑫、唐文浩

展开 >

广东电网有限责任公司湛江供电局,广东 湛江 524005

广东工业大学 自动化学院,广州 510006

东莞理工学院 电子工程与智能化学院,广东 东莞 523808

电力变压器 故障识别和分类 Piecewise混沌映射 算术优化算法 支持向量机

国家自然科学基金项目国家863高技术基金项目广东省基础与应用基础研究基金项目富华电子智能制造和电力电子技术服务项目

507670012007AA04Z1972019B151512007620221800500253

2024

黑龙江电力
黑龙江省电机工程学会 黑龙江省电力科学研究院

黑龙江电力

影响因子:0.359
ISSN:1002-1663
年,卷(期):2024.46(2)
  • 15