首页|基于因果推断的多标记因果类属属性学习算法

基于因果推断的多标记因果类属属性学习算法

扫码查看
真实世界中的事件间存在着因果关系,特征与标记间也存在着潜在的因果关系.基于此,提出一种基于因果推断的类属属性学习算法CLSF.类属属性算法充分挖掘各标记的独有特征并构建分类器,从而在一定程度上提升多标记学习的性能.传统的类属属性算法大多依赖于欧氏距离或 L1 范数提取类属属性.然而,欧氏距离并不适用于高维空间的度量.而 L1 范数的稀疏性很大程度上取决于参数.因此,文中算法使用因果推断学习类属属性.首先对原始标记进行增强化处理,并基于增强标记学习标记和特征之间的因果关系,然后通过因果关系矩阵约束权重矩阵提取因果类属属性.多个多标记基准数据集中的实验表明,CLSF 算法较其他对比算法具有一定的性能优势,统计假设检验的结果也表明文中算法的有效性.
Multi-label causal generic attribute learning algorithm based on causal inference
Similar to causal relationships that commonly exist in the world,causal effect also exists between features and labels.Based on this,a causal inference-based label-specific features learning algorithm CLSF(Causal Label-Specific Features Learning)is proposed in this paper.Label-specific features learning algorithm fully explores the unique characteristics of each label,classifiers trained with label-specific features usually gain an improved performance to a certain extent.Euclidean distance and L1-Norm are the most common methods for existing label-specific features learning algorithms.However,Euclidean distance is insufficient for measuring high-dimension data.Meanwhile,L1-Norm requires a proper parameter election.Therefore,in this paper,we utilize the causal inference method to learn label-specific features.First,we embed the original label into a new space to acquire continuous labels.Then the causal relationship between features and labels is obtained with a causal inference method.Finally,it constrains the original feature space with the learned causality to extract causal label-specific features.Experiments conducted on multiple multi-label benchmark datasets demonstrated that the CLSF algorithm has some advantages over other comparison algorithms.The statistical hypothesis testing results also further prove the proposed method’s effectiveness.

label-specific featureslabel smoothingcausal inferencemulti-label learning

鲍家朝、柏琪

展开 >

安徽信息工程学院 计算机与软件工程学院,安徽 芜湖 241100

类属属性 标记增强 因果推断 多标记学习

2024

黑龙江工程学院学报
黑龙江工程学院

黑龙江工程学院学报

影响因子:0.414
ISSN:1671-4679
年,卷(期):2024.38(5)