首页|基于CNN-LSTM的短期风电功率预测方法研究

基于CNN-LSTM的短期风电功率预测方法研究

扫码查看
在我国双碳战略的背景下,风力发电作为一种绿色可再生能源得到了快速发展.然而由于风力发电有不确定性,直接接入电网将对电网的安全运行带来威胁.为此,需要对短期风电功率进行准确预测,以便电网提前调度不同来源电力保证电网平稳运行.随着深度学习技术的发展,为提高短期风电功率预测的精度提供了新的途径.为了发挥卷积神经网络(CNN)的局部特征提取优势和长短期记忆网络(LSTM)的时间序列特征提取优势,提出将两种神经网络结合形成新的混合神经网络来对短期风电功率进行预测的方法,并探究两种不同的混合模型:CNN-LSTM并联模型和双CNN-LSTM模型.实验结果显示,与传统的机器学习模型、单一的 LSTM模型及现有文献中的CNN-GRU模型相比,所提出的两种混合模型均具有更高的预测精度,其中,CNN-LSTM模型预测精度最高,同时两种模型还具备较好的鲁棒性.
Research on short term wind power prediction method based on CNN-LSTM
In the context of China's dual carbon strategy,as a green renewable energy,wind power has been developed rapidly.However,due to the uncertainty of wind power,direct access to the grid will pose a threat to the safe operation of the grid.To this end,it is necessary to accurately predict the short-term wind power so that the power grid can dispatch power from different sources in advance to ensure the smooth operation of the power grid.With the development of deep learning technology,it provides a new way to improve the accuracy of short-term wind power prediction.In order to give full play to the advantages of local feature extraction of Convolutional Neural Network(CNN)and the advantage of time series feature extraction of Long Short-Term Memory Network(LSTM),this paper proposes a new hybrid neural network to predict short-term wind power prediction by combining two neural networks,and explores two different hybrid models:CNN-LSTM parallel model and dual CNN-LSTM model.Experimental results show that compared with the traditional machine learning model,the single LSTM model and the CNN-GRU model in the existing literature,the two hybrid models proposed in this paper have higher prediction accuracy,and the CNN-LSTM model has the highest prediction accuracy,and the two models also have good robustness.

short term wind power predictionconvolutional neural networklong short-term memory networkhybrid neural network model

周丽娜、刘旭东

展开 >

黑龙江工程学院 计算机科学与技术学院,哈尔滨 150050

哈尔滨工业大学 经济与管理学院,哈尔滨 150001

短期风电功率预测 卷积神经网络 长短期记忆网络 混合神经网络

2024

黑龙江工程学院学报
黑龙江工程学院

黑龙江工程学院学报

影响因子:0.414
ISSN:1671-4679
年,卷(期):2024.38(6)