科学技术创新2024,Issue(1) :85-88.

基于卷积神经网络的电力市场短期售电量预测方法

A Method for Predicting Short Term Electricity Sales in the Electricity Market Based on Convolutional Neural Networks

王蕾 李斌 李泠聪 张振明 姜涛
科学技术创新2024,Issue(1) :85-88.

基于卷积神经网络的电力市场短期售电量预测方法

A Method for Predicting Short Term Electricity Sales in the Electricity Market Based on Convolutional Neural Networks

王蕾 1李斌 1李泠聪 1张振明 1姜涛1
扫码查看

作者信息

  • 1. 东北电力大学,吉林吉林
  • 折叠

摘要

电力市场短期售电量预测的精度对优化用电结构以及提高供电可靠性具有重要意义,传统短期售电量预测方法没有考虑偏差电量考核影响、用电行为差异导致电预测精度低,提出基于卷积神经网络的电力市场短期售电量预测方法,首先根据用户的用电负荷率进行分类,获取不同行业的用电特征和需求模式,然后考虑正负偏差电量的影响,设计基于CNN-ResNet的短期售电量预测方法,通过实验分析表明,该方法能够有效提高多因素影响下售电量预测的准确率.

Abstract

The accuracy of short-term electricity sales forecasting in the power market is of great signifi-cance for optimizing the electricity consumption structure and improving power supply reliability.Traditional short-term electricity sales forecasting methods do not consider the impact of deviation in electricity consump-tion assessment and differences in electricity consumption behavior,resulting in low electricity prediction ac-curacy.A convolutional neural network-based short-term electricity sales forecasting method in the power market is proposed,which first classifies users based on their electricity load rates,Obtain the electricity consumption characteristics and demand patterns of different industries,and then consider the impact of posi-tive and negative deviations in electricity consumption.Design a short-term electricity sales prediction method based on CNN ResNet.Experimental analysis shows that this method can effectively improve the accuracy of electricity sales prediction under multiple factors.

关键词

售电量预测/偏差电量/K-means++/CNN-ResNet

Key words

electricity sales forecast/deviation electricity quantity/K-means++/CNN-ResNet

引用本文复制引用

基金项目

吉林省科技发展计划项目(20200401097GX)

出版年

2024
科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
参考文献量5
段落导航相关论文