首页|Ves-YOLOv4:复杂海域下船只目标检测技术

Ves-YOLOv4:复杂海域下船只目标检测技术

扫码查看
本文针对复杂海域船只目标检测成功率低的问题,提出来一种基于YOLOv4的船只目标检测网络架构Ves-YOLOv4,在输入端进行Mosaic数据增强、自适应图片缩放优化等技术,提高架构的泛化能力;基于注意力机制构建特征注意模块,嵌入到CSPDarknet-53中,提高模型在复杂环境下的特征提取能力;针对网络过深导致特征消失的问题,优化PANet特征融合结构.实验在自定义数据集中进行,结果表明:本文所应用的复杂海域船只目标检测算法,可识别出散货船、集装箱船、渔船、游轮、岛屿等目标信息,保持了较高的识别精度和识别速度.在RTX3060上,模型的mAP可达到85.2%,FPS可达23.1,可以达到实时检测的基本要求.
Ves-YOLOv4:Vessel Target Detection Technology in Complex Sea Area
In order to solve the problem of low success rate of ship target detection in complex sea areas,a Ves-YOLOv4 based ship target detection network architecture is proposed in this paper.Mosaic data en-hancement and adaptive image scaling optimization are applied at the input side to improve the generalization ability of the architecture.Based on the attention mechanism,the feature attention module is built and embed-ded in CSPDarknet-53 to improve the feature extraction ability of the model in complex environment.The fea-ture fusion structure of PANet is optimized to solve the problem of feature disappearance caused by too deep network.Experiments are carried out in custom data sets.The results show that the complex vessel target de-tection algorithm used in this paper can identify target information such as bulk carriers,container ships,fish-ing boats,cruise ships and islands,and maintain high recognition accuracy and speed.On RTX3060,the mAP of the model can reach 85.2%and the FPS can reach 23.1,which can meet the basic requirements of re-al-time detection.

feature extractionvessel inspectionaggregation network

郭富海、穆晓斌、张申、王鸿显、高歌

展开 >

中船航海科技有限责任公司,北京

海装驻北京地区第四代表室,北京

中国船舶集团系统工程研究院,北京

特征提取 船只检测 聚合网络

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(1)
  • 1