科学技术创新2024,Issue(2) :209-212.

航空发动机涡轮叶片疲劳寿命预测和可靠性分析

Aero-engine Turbine Blade Fatigue Life Prediction and Reliability Analysis

马雄 李翠 杨飘
科学技术创新2024,Issue(2) :209-212.

航空发动机涡轮叶片疲劳寿命预测和可靠性分析

Aero-engine Turbine Blade Fatigue Life Prediction and Reliability Analysis

马雄 1李翠 1杨飘1
扫码查看

作者信息

  • 1. 贵州民族大学数据科学与信息工程学院,贵州贵阳
  • 折叠

摘要

针对航空发动机涡轮叶片未及时检修发生疲劳破坏造成发动机故障问题,本文对航空发动机涡轮叶片做结构可靠性分析,从而进行故障风险评估以及优化涡轮叶片的巡检时间.以我国航空发动机常用的涡轮叶片材料——GH4033作为研究对象,利用应力-强度干涉模型,结合GH4033材料疲劳试验数据,基于P-S-N曲线对涡轮叶片寿命进行预测.同时,在应力参数和安全系数K已知,强度参数未知时,对强度参数作了极大似然估计.结果表明,极大似然估计值接近真实值.

Abstract

Aiming at the problem of engine failure caused by fatigue failure of aero-engine turbine blades,this paper analyzes the structural reliability of aero-engine turbine blades,so as to carry out fault risk assessment and optimize the inspection time of turbine blades.Taking the turbine blade material GH4033 commonly used in aero-engines in China as the research object,the stress-strength interference model is used to predict the life of turbine blades based on the P-S-N curve combined with the fatigue test data of GH4033 material.At the same time,when the stress parameters and safety factor K are known and the strength parameters are unknown,the maximum likelihood estimation of the strength parameters is made.The results show that the maximum likelihood estimation is close to the true value.

关键词

涡轮叶片/疲劳寿命/可靠性分析/极大似然估计

Key words

turbine blade/fatigue life/reliability analysis/maximum likelihood estimation

引用本文复制引用

出版年

2024
科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
参考文献量11
段落导航相关论文