首页|基于振动信号模态分解的变压器机械故障检测方法

基于振动信号模态分解的变压器机械故障检测方法

扫码查看
传统的变压器机械故障检测方法,只能监测故障发生后温度状态,并且训练误差较大,因此设计一种基于振动信号模态分解的变压器机械故障检测方法.通过计算局部梯度值,了解每个特征对于故障分类的贡献程度.改进损失函数可以提高模型的性能和准确性,建立变压器热点温度模型可以实时监测温度状态,预防潜在故障.基于振动信号模态分解提取故障节点参数特征,更准确地识别和诊断故障,最后,通过定位变压器机械故障发生位置,可以快速采取维修措施,为变压器的故障诊断提供了重要的技术支持.实验结果表明,设计的基于振动信号模态分解的变压器机械故障检测方法的训练误差保持在0.05,证明设计的方法好,有一定的研究价值.
Detection Method of Transformer Mechanical Fault Based on Mode Decomposition of Vibration Signal
The traditional transformer mechanical fault detection method can only monitor the temperature state after the fault occurs,and the training error is large,so a transformer mechanical fault detection method based on the mode decomposition of vibration signal mode is designed.By calculating the local gradient val-ue,we understand how much each feature contributes to the fault classification.Improving the loss function can improve the performance and accuracy of the model,and establishing the transformer hotspot temperature model can monitor the temperature status in real time and prevent potential faults.Based on the decomposi-tion of vibration signal mode,the parameter characteristics of fault nodes are extracted to identify and diag-nose faults more accurately.Finally,by positioning the location of mechanical failure of transformer,mainte-nance measures can be taken quickly,which provides important technical support for the fault diagnosis of transformer.The experimental results show that the training error of the designed transformer mechanical fault detection method based on vibration signal mode decomposition is kept at 0.05,which proves that the design method is good and has certain research value.

vibration signalmode decompositiontransformermechanicalfaultdetection

迟国峰

展开 >

辽源矿业集团配售电有限公司,吉林辽源

振动信号 模态分解 变压器 机械 故障 检测

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(4)
  • 7