首页|面向车路协同感知的高速公路抛洒物高精度识别

面向车路协同感知的高速公路抛洒物高精度识别

扫码查看
为提高抛洒物实时识别精度,提出了 CABIFPN-YOLOv5的高速公路抛洒物识别模型.首先,构建了抛洒物图像数据集;其次,通过YOLOv5算法模型进行网络训练;最后,使用特征融合能力更强的双向特征金字塔BIFPN网络,同时融合CA注意力机制改进骨干网络,进而提高模型的实时检测精度.实验结果显示,本研究所提出的基于CABIFPN-YOLOv5算法模型,识别精度均值mAP@0.5和mAP@0.5∶0.95达到97.9%和94.7%,FPS为89.5 Hz,能够实现抛洒物的实时高精度识别.
High-precision Recognition of Highway Throwing Objects Based on Cooperative Perception of Vehicle and Road
Aiming to improve the accuracy of real-time identification of throwing object,a highway throw-ing objects recognition model based on CABIFPN-YOLOv5 is proposed.Firstly,a dataset for image recogni-tion of throwing objects was constructed;Secondly,the YOLOv5 algorithm model is used for network training;Finally,a bidirectional feature pyramid BIFPN network with stronger feature fusion capability is used,while incorporating Coordinate attention mechanismto improve the backbone network,thereby improving the real-time detection accuracy of the model.Experimental results demonstrate that the proposed model based on the CABIFPN-YOLOv5 algorithm has a mean recognition accuracy mAP@0.5 and mAP@0.5:0.95 reaches 97.9%and 94.7%,with an FPS of 89.5 Hz,enabling real-time and high-precision identification of throwing objects.

throwing objectshigh-precision recognitionCABIFPN-YOLOv5 algorithm model

韩发年

展开 >

浙江省交通运输科学研究院,浙江杭州

抛洒物 高精度识别 CABIFPN-YOLOv5算法模型

浙江省重点研发计划项目

2021C04007

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(4)
  • 1