首页|基于物理实验数据的回归分析

基于物理实验数据的回归分析

扫码查看
讨论大学物理实验数据回归分析所涉及的数学运算,探讨编写程序进行线性拟合、相关分析等运算.Python是应用于机器学习、大数据和建模的语言,拥有庞大的库和专业的数据处理功能,可以进行数值运算和符号运算、作图和动画、微积分、统计等运算.Python擅长各类回归分析,语言逻辑清晰,语句简洁,提高了计算速度和计算正确率.运用最小二乘矩阵解,SVD奇异值分解,numpy、scipy、sklearn的回归模型和梯度下降法,拟合铜——康铜热电偶的温差电动势的线性回归模型,计算铜——康铜的温差电动势的温度系数.最小二乘矩阵解析解可能因矩阵奇异而不能运用;SVD适应能力更强,计算更快速,功能也更强,对接近奇异矩阵有很好的效果;梯度下降可能不收敛或者只有局部最优解,迭代次数可能很多;sklearn回归分析功能更丰富,能适用于各类数据处理.
Regression Analysis of Based on Physics Experiment Data
Discuss the mathematical operations involved in the regression analysis of college physics ex-perimental data,and the programming of linear fitting,correlation analysis and other operations.Python is used in machine learning,big data and modeling.It has abundant libraries and professional data processing functions.It can perform numerical and symbolic calculation,drawing and animation,calculus,statistics and other operations.Python is good at all kinds of regression problems,with clear language logic and concise sentences,which improves the calculation speed and accuracy.Using the least squares method,SVD(singu-lar value decomposition),numpy,scipy and sklearn regression model,and gradient descent method,the linear regression model of thermoelectromotive force of copper-constantan thermocouple witch is linear with the tem-perature difference is fitted,and the Seebeck coefficient is calculated.The analytical solution of the least squares estimator may not work if the matrix is singular;SVD has better adaptability,improving calculation performance and may work better in many cases,for example mostly singular matrix.The gradient descent method has problem of slow convergence and converging to local optimal solutions,and takes many iterations;the linear_model of sklearn is useful and can be applied to many kinds of data processing

least squares estimategradient descent methodSVDlinear regression

周洪亮

展开 >

江苏电子信息职业学院,江苏淮安

最小二乘法 梯度下降 SVD奇异值分解 线性回归

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(4)
  • 3