首页|精英群体引导遗传算法求解车辆路径问题

精英群体引导遗传算法求解车辆路径问题

扫码查看
为了改善遗传算法在求解车辆路径问题时容易陷入局部最优和运算量大的问题,通过提升种群质量,形成以精英群体引导种群快速进化策略.改进传统遗传算法的交叉、变异和选择操作,以更多群体选择性提高进化效率.在6个TSPLIB标准库基准问题上和实际问题验证所提出的算法的可行性和有效性,实验结果表明:基于精英群体引导的遗传算法可有效地避免陷入局部最优解,提高了种群收敛速度,在求解的准确率、稳定性上都具有优势.
Elite Group-Guided Genetic Algorithm for Solving Vehicle Pouting Problem
In order to improve the defects of genetic algorithm when solving Vehicle Pouting Problem,such as easy to fall into local optimization and large amount of computation.The improved circle algorithm is used to optimize individuals,improve the quality of the population.The rapid evolution strategy is formed through the guidance of elite groups.The crossover,mutation and selection operations of traditional genetic algorithms are improved to generate more populations and enhance the efficiency of evolution.The feasibility and effectiveness of the proposed algorithm are verified on 8 TSPLIB benchmark problems.Experimental results show that the elite group-guided genetic algorithm can effectively avoid falling into the local optimal solution,improve the convergence rate of the population,and has advantages on accuracy rate and stability.

genetic algorithmcombinatorial optimizationvehicle pouting problem

吴军

展开 >

宁夏大学 新华学院,宁夏 银川

遗传算法 组合优化 车辆路径问题

宁夏大学新华学院科研项目

21XHKY05

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(5)
  • 8