首页|基于神经网络的弹性力学位移计算方法研究

基于神经网络的弹性力学位移计算方法研究

扫码查看
常规的弹性力学问题是以有限元方法为主进行数值求解的,网格划分对计算结果影响较大,从而在求解力学问题时存在一定的局限性.神经网络作为一种通用数值逼近器,可以用来实现对弹性力学偏微分方程的求解.本文建立了基于物理约束的神经网络偏微分方程求解模型,以常见的二维平面压缩计算为例,实现了该方法的求解和验证,为智能化弹性力学求解提供了新思路与方法.
Research on Neural Network-Based Computational Methods for Elasticity Displacement in Mechanics
Conventional elasticity problems are primarily numerically solved using finite element methods,where mesh partitioning significantly influences computational results,leading to certain limitations in solving mechanical problems.Neural networks,as a versatile numerical approximator,can be employed to solve partial differential equa-tions in elasticity mechanics.This paper establishes a neural network partial differential equation solving model based on physical constraints.Taking the example of common two-dimensional plane compression calculations,the method's solution and validation are implemented,providing new ideas and methods for intelligent elasticity prob-lem-solving.

elasticity mechanicsneural networksnumerical computationsystem of partial differential equa-tions

蔡振荣

展开 >

桂林电子科技大学 建筑与交通工程学院,广西 桂林

弹性力学 神经网络 数值计算 偏微分方程组

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(6)
  • 3