科学技术创新2024,Issue(6) :104-107.

基于神经网络的弹性力学位移计算方法研究

Research on Neural Network-Based Computational Methods for Elasticity Displacement in Mechanics

蔡振荣
科学技术创新2024,Issue(6) :104-107.

基于神经网络的弹性力学位移计算方法研究

Research on Neural Network-Based Computational Methods for Elasticity Displacement in Mechanics

蔡振荣1
扫码查看

作者信息

  • 1. 桂林电子科技大学 建筑与交通工程学院,广西 桂林
  • 折叠

摘要

常规的弹性力学问题是以有限元方法为主进行数值求解的,网格划分对计算结果影响较大,从而在求解力学问题时存在一定的局限性.神经网络作为一种通用数值逼近器,可以用来实现对弹性力学偏微分方程的求解.本文建立了基于物理约束的神经网络偏微分方程求解模型,以常见的二维平面压缩计算为例,实现了该方法的求解和验证,为智能化弹性力学求解提供了新思路与方法.

Abstract

Conventional elasticity problems are primarily numerically solved using finite element methods,where mesh partitioning significantly influences computational results,leading to certain limitations in solving mechanical problems.Neural networks,as a versatile numerical approximator,can be employed to solve partial differential equa-tions in elasticity mechanics.This paper establishes a neural network partial differential equation solving model based on physical constraints.Taking the example of common two-dimensional plane compression calculations,the method's solution and validation are implemented,providing new ideas and methods for intelligent elasticity prob-lem-solving.

关键词

弹性力学/神经网络/数值计算/偏微分方程组

Key words

elasticity mechanics/neural networks/numerical computation/system of partial differential equa-tions

引用本文复制引用

出版年

2024
科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
参考文献量3
段落导航相关论文