首页|基于选择性卷积核CNN的声学温度场重构插值

基于选择性卷积核CNN的声学温度场重构插值

扫码查看
锅炉温度反应了炉内燃烧情况.精准定位炉内高温区域,对提高燃烧效率,识别故障情况起到重要作用.传统声学温度场重构插值依赖于声波换能器的布置与径向基函数的选择,难以实现高分辨率温度场重构.为了解决该问题,本文设计基于选择性卷积核CNN的温度场重构插值网络(TRIN)对声学温度场重构中的插值问题进行优化,实现了对温度场的高精度插值.为了验证模型的有效性,在仿真温度场数据集和锅炉厂实测数据上开展实验,取得了良好的结果.
Acoustic Temperature Field Reconstruction Interpolation Based on Selective Kernel CNN
The boiler temperature reflects the combustion in the furnace.Accurate positioning of the high temperature area in the furnace plays an important role in improving combustion efficiency and identifying fault conditions.Traditional acoustic temperature field reconstruction interpolation depends on the arrangement of acoustic transducer and the choice of radial basis function,so it is difficult to achieve high resolution temperature field reconstruction.In order to solve this problem,a temperature field reconstruction interpolation network(TRIN)based on the selective convolution kernel CNN is designed to optimize the interpolation problem in the acoustic temperature field reconstruction,and the high precision interpolation of temperature field is realized.In order to verify the validity of the model,experiments are carried out on the simulated temperature field data set and the measured data of the boiler plant,and good results are obtained.

convolutional neural networkinterpolationacoustic temperature field reconstructionselective kernel

段奕欣、陈立玮、周新志

展开 >

四川大学 电子信息学院,四川成都

卷积神经网络 插值 声学温度场重构 选择性卷积核

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(6)
  • 14