首页|基于特征信息熵与支持向量机的智能网联汽车CAN总线异常检测技术

基于特征信息熵与支持向量机的智能网联汽车CAN总线异常检测技术

扫码查看
本文结合CNA报文的结构特点,探究了基于特征、信息熵的异常检测技术和基于支持向量机的异常检测技术.基于特征、信息熵的异常检测技术,将CAN ID作为特征,统计包含该特征的所有报文并计算信息熵.根据信息熵确立阈值标准,对比CAN总线报文的熵值是否在阈值范围内,从而检测是否存在异常.仿真结果表明,在报文数量较少的情况下,该技术的异常检测率可以达到100%.基于支持向量机的异常检测技术,将异常报文预处理后输入到支持向量机中训练,得到异常检测指标.利用该指标与CAN总线报文进行对比,从而检测是否存在异常.实验结果表明,该技术对多种CNA报文的异常检测率在90%以上.
Anomaly Detection Technology of Intelligent Networked Vehicle CAN Bus Based on Feature Information Entropy and Support Vector Machine
Based on the structural characteristics of CNA messages,this paper explores the anomaly detec-tion technology based on feature and information entropy and the anomaly detection technology based on sup-port vector machine.The anomaly detection technology based on feature and information entropy takes CAN ID as a feature,collects statistics on all packets containing the feature,and calculates the information en-tropy.Establish a threshold standard based on information entropy,and compare the entropy of CAN bus packets to check whether the entropy is within the threshold range.Simulation results show that the anomaly detection rate of this technology can reach 100%when the number of packets is small.Based on the support vector machine(SVM)anomaly detection technology,the abnormal message is preprocessed and input into SVM for training,and the anomaly detection index is obtained.The indicator is compared with the CAN bus message to detect whether there is an exception.The experimental results show that the anomaly detection rate of various CNA messages is more than 90%.

information entropysupport vector machineCAN busanomaly detection

陈宁

展开 >

浙江机电职业技术学院,浙江杭州

信息熵 支持向量机 CAN总线 异常检测

浙江省科技厅公益基金

LGG22F020031

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(7)
  • 1
  • 5