首页|基于改进多尺度残差网络的工业机器人旋转部件故障研究

基于改进多尺度残差网络的工业机器人旋转部件故障研究

扫码查看
针对传统残差神经网络未考虑不同尺度故障特征差异的问题.提出一种基于改进多尺度残差神经网络的工业机器人旋转部件故障诊断模型(Improved Multiscale Residual Neural Network,IMRNN).首先使用不同大小的宽卷积层提取故障信号中的宏观特征,并将其合并为初始特征向量;其次构建多尺度自适应选择卷积块提取不同尺度的特征;然后引用残差架构到多个尺度层中提高模型的泛化性;同时应用通道注意力机制对特征进行加权融合,从而完成故障诊断.结果显示,该模型有更高的准确率和良好的抗干扰能力.
Research on Rotating Parts Fault of Industrial Robots Based on Improved Multi-scale Residual Networks
The traditional residual neural network does not consider the difference of fault characteristics at different scales.An Improved Multiscale Residual Neural Network(IMRNN)based fault diagnosis model for ro-tating parts of industrial robots is proposed.First,wide convolution layers of different sizes are used to extract the macro features of the fault signals and combine them into initial feature vectors.Secondly,multi-scale adaptive selection convolution blocks are constructed to extract features of different scales.Then,the residual architecture is applied to multiple scale layers to improve the generalization of the model.At the same time,the channel attention mechanism is used to perform weighted fusion of features to complete fault diagnosis.The results show that the model has higher accuracy and better anti-jamming ability.

fault diagnosismultiscale neural networksresidual networksindustrial robots

王博、杨乾锋

展开 >

重庆市测绘科学技术研究院,重庆

自然资源部智能城市时空信息与装备工程技术创新中心,重庆

故障诊断 多尺度神经网络 残差网络 工业机器人

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(7)
  • 5