科学技术创新2024,Issue(10) :183-186.

基于LSTM的矿井突水风险预测研究

Research on LSTM Based Prediction of Mine Water Inrush Risk

徐一帆 韩云春 黄刚 童政 高翔
科学技术创新2024,Issue(10) :183-186.

基于LSTM的矿井突水风险预测研究

Research on LSTM Based Prediction of Mine Water Inrush Risk

徐一帆 1韩云春 1黄刚 1童政 1高翔1
扫码查看

作者信息

  • 1. 淮南矿业(集团)有限责任公司 深部煤炭安全开采与环境保护全国重点实验室,安徽 淮南;平安煤炭开采工程技术研究院有限责任公司,安徽 淮南
  • 折叠

摘要

随着矿井开采深度不断增加,矿井突水灾害威胁日益增大,如何精准预测矿井突水风险是值得深入研究的课题.针对传统方法未对监测数据中隐藏的有效信息进行深度挖掘的问题,以潘二煤矿 11023 工作面为工程背景,提出一种基于LSTM的矿井涌水量预测模型和矿井水位预测模型,采用微震监测数据与水文观测数据对矿井涌水量和水位进行预测.结果表明,预测结果与真实测量值偏差较小,精度较高,具有较好的应用价值,可为矿井防治水工作提供技术指导.

Abstract

With the increasing mining depth,the threat of mine water inrush disaster is increasing day by day.How to accurately predict the risk of mine water inrush is a topic worthy of in-depth research.Aiming at the problem that the traditional methods do not dig deeply the effective information hidden in the monitoring data,taking the 11023 working face of Pan'er Coal Mine as the engineering background,a mine water inrush prediction model and mine water level prediction model based on LSTM are proposed,which use microseismic monitoring data and hydrological observation data to predict the mine water inrush and water level.The results show that the prediction results have small deviation from the real measured value,and have high accuracy,which has good application value and can provide technical guidance for the mine water prevention and control work.

关键词

煤矿开采/矿井突水风险预测/长短时记忆网络

Key words

coal mining/prediction of mine water inrush risk/long short-term memory network

引用本文复制引用

出版年

2024
科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
参考文献量8
段落导航相关论文