科学技术创新2024,Issue(10) :207-210.

铁道路基盖板缺失病害检测的YOLOv5l改进模型

Improved YOLOv5l Model for Detection of Missing Cover in Railway Track Beds

杨兴志 刘杰
科学技术创新2024,Issue(10) :207-210.

铁道路基盖板缺失病害检测的YOLOv5l改进模型

Improved YOLOv5l Model for Detection of Missing Cover in Railway Track Beds

杨兴志 1刘杰2
扫码查看

作者信息

  • 1. 北京建筑大学 测绘与城市空间信息学院,北京
  • 2. 中国铁道科学研究院集团有限公司铁道建筑研究所,北京
  • 折叠

摘要

针对无人机视角下铁路路基上的目标物相对较小,背景复杂,使用现有目标检测网络时容易出现误检和漏检的问题.本文对已有的YOLOv5l模型进行改进:首先,采用数据增强技术,增加有效样本数量;其次,为了降低复杂背景对检测的干扰,使模型更加专注于目标信息,引入双向路由注意力机制;最后,使用WIoU(Wise-IoU)损失函数代替原有的损失函数,解决高质量和低质量样本之间的平衡问题,增强模型的检测性能.通过在自制的盖板缺失病害数据集上进行实验,结果表明改进后的模型的平均检测精度从原始YOLOv5l的74.2%提高到了 89.5%,满足路基盖板缺失病害检测需求.

Abstract

In the context of unmanned aerial vehicle(UAV)perspectives over railway track beds,where the target objects are relatively small and the background is complex,existing object detection networks often suffer from issues such as false positives and misses.This paper proposes improvements to the existing YOLOv5l model.Firstly,data augmentation techniques are employed to increase the effective number of samples.Sec-ondly,to mitigate interference from complex backgrounds and enable the model to focus more on target infor-mation,a bidirectional routing attention mechanism is introduced.Finally,the Wise-IoU(WIoU)loss function is utilized instead of the original loss function to address the balance between high-quality and low-quality sam-ples,thereby enhancing the model's detection performance.Experimental results on a custom dataset of missing cover plate demonstrate that the improved model achieves an average detection accuracy of 89.5%,compared to the original YOLOv5l's 74.2%,meeting the requirements for detecting missing cover defects in track beds.

关键词

无人机影像/YOLOv5l/注意力机制/损失函数

Key words

UAV imagery/YOLOv5l/attention mechanism/loss function

引用本文复制引用

出版年

2024
科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
参考文献量10
段落导航相关论文