首页|基于GCA-MVO-ICA优化BP的负荷预测研究

基于GCA-MVO-ICA优化BP的负荷预测研究

扫码查看
为提高微网负荷预测的精度,提出来一种利用灰色关联度分析优化BP神经网络优化输入层数据,利用新型的多元宇宙算法优化隐含层权重,采用帝国竞争算法优化输出层结果的逐层优化模型,对 2 组实测数据算例分析.结果表明,所提GCA-MVO-ICA优化BP网络的方法能够提高微网负荷的预测精度,并且具有较好的普适性.
Load Prediction Study of Optimized BP Based on GCA-MVO-ICA
To enhance the accuracy of microgrid load forecasting,a method is proposed that utilizes grey correlation analysis to optimize the input layer data of the BP neural network,employs a novel multidimen-sional universe algorithm to optimize the hidden layer weights,and utilizes an imperial competitive algorithm to optimize the output layer results in a layer-by-layer optimization model.The method is applied to the analysis of two sets of actual measurement data.The results indicate that the proposed GCA-MVO-ICA opti-mization method for the BP network can improve the prediction accuracy of microgrid load and exhibits good universality.

BP neural networkgray correlationmultiverse algorithmempire competition algorithmload forecasting

王忠峰、王智

展开 >

吉林江机特种工业有限公司,吉林 吉林

哈尔滨诺信工大测控技术有限公司,黑龙江 哈尔滨

BP神经网络 灰色关联度 多元宇宙算法 帝国竞争算法 负荷预测

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(10)
  • 6