首页|基于改进蚁群算法的物流无人机航迹规划研究

基于改进蚁群算法的物流无人机航迹规划研究

扫码查看
针对物流配送中无人机航迹规划问题进行研究,考虑无人机性能和空域环境等影响因素,以经济总成本最小,时间最短和安全程度最高为目标,建立多约束条件下物流无人机航迹规划模型.先改善传统蚁群算法的信息素分布,启发函数搜索精度,再叠加天牛须算法进行二次规划,利用改进的算法对上述模型进行求解.研究结果表明:本文算法能够有效减少算法运行时间,并且在规划的最优航迹方面,改进算法规划的最优航迹长度最短,航迹较优,在保证最快到达目标点的同时也保证了无人机飞行过程中能够安全的避开障碍物威胁,证明了改进蚁群算法的有效性.
Research on Logistics Drone Trajectory Planning Based on Improved Ant Colony Algorithm
Research is conducted on the problem of unmanned aerial vehicle(UAV)trajectory planning in logistics distribution,taking into account factors such as UAV performance,and airspace environment.With the goal of minimizing total economic cost,minimizing time,and maximizing safety,a logistics UAV trajectory planning model is established under multiple constraint conditions.Firstly,improve the pheromone distribution of the traditional ant colony algorithm,improve the search accuracy of the heuristic function,and then overlay the beetle whisker algorithm for quadratic programming.Use the improved algorithm to solve the above model.The research results show that the algorithm proposed in this paper can effectively reduce the running time of the algorithm,and in terms of the planned optimal trajectory,the improved algorithm has the shortest and better optimal trajectory length.It ensures the fastest arrival at the target point while also ensuring the safe avoidance of obstacle threats during drone flight,proving the effectiveness of the improved algorithm.

logistics dronesant colonytrack planning3D spatial modelingmultiple target

杨永刚、李玉盈

展开 >

中国民航大学,天津

物流无人机 蚁群算法 航迹规划 三维空间建模 多目标

安全能力建设资金项目

ASSA2022/15

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(11)
  • 4