首页|改进YOLOv5s算法的无人机小目标检测方法

改进YOLOv5s算法的无人机小目标检测方法

扫码查看
针对无人机视角小目标检测出现目标漏检、误检和精度不高的问题,研究适用于无人机视角下的YOLOv5目标检测算法.首先,为了使网络学习到更多的特征,在主干网络中引入轻量化的MobileNetV3_Small算法,增强模型特征提取能力的同时降低了参数量和运算量,方便部署到无人机设备.然后,为了加强模型在目标聚集的情形下以降低漏检并提升检测精度,替换原始非极大值抑制算法为Soft-NMS.实验结果表明,改进的模型在VisDrone2019数据集上检测精度达到34.7%,相比于YOLOv5s算法精度提高5.4个百分点,同时降低了模型的参数和浮点运算量,便于部署到无人机设备,使得改进后的算法可以更好的应用于无人机视角下的图像目标检测任务中.
Improved YOLOv5s Algorithm for Small Target Detection in Unmanned Aerial Vehicles
In response to challenges such as missed detections,false alarms,and reduced accuracy in small target detection from the perspective of unmanned aerial vehicles(UAV),this study investigates the adaptation of the YOLOv5 object detection algorithm for UAV scenarios.Firstly,to enhance the model's feature extraction capability while reducing parameters and computational complexity,the lightweight MobileNetV3_Small algorithm is introduced into the backbone network,enabling the network to learn more features.This design facilitates deployment on UAV devices.Secondly,to improve detection accuracy in scenarios with clustered targets and reduce missed detections,the conventional non-maximum suppression(NMS)algorithm is replaced with Soft-NMS.Experimental results demonstrate that the improved model achieves a detection accuracy of 34.7%on the VisDrone2019 dataset.Compared to the YOLOv5s algorithm,this represents a 5.4 percentage point improvement in accuracy.Simultaneously,the model's parameters and floating-point operations are reduced,facilitating deployment on UAV devices.The refined algorithm proves to be more suitable for image object detection tasks from the perspective of UAV.

UAV small target detectionYOLOv5sMobileNetV3Non-Maximum Suppression algorithm

杨兴志

展开 >

北京建筑大学测绘与城市空间信息学院,北京

无人机小目标检测 YOLOv5s MobileNetV3 非极大值抑制算法

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(11)
  • 2