首页|基于改进近端策略优化算法控制的应急无人机飞行控制系统研究

基于改进近端策略优化算法控制的应急无人机飞行控制系统研究

扫码查看
为进一步提高应急无人机在执行任务时的飞行控制的效果,提出利用维度裁剪技术,优化解决近端策略优化算法(PPO)的零梯度问题,在保持良好采样效率的同时,加快收敛速率,从而提高控制性能.仿真试验结果表明,改进PPO算法在不同迭代次数的准确率均大于90%,最高准确率为92%,而k-NN算法的准确率在不同迭代次数上存在一定波动,最高准确率为90%,最低准确率仅为80%.且改进PPO算法和PPO算法的总计算时间成本基本相同,均为1 932.4 s,但改进PPO算法在训练过程中能使损失值收敛得更快.
Research on Emergency Drone Flight Control System Based on Improved Near End Strategy Optimization Algorithm Control
In order to further improve the flight control effectiveness of emergency drones during mission execution,a dimension pruning technique is proposed to optimize and solve the zero gradient problem of the Near End Policy Optimization(PPO)algorithm.While maintaining good sampling efficiency,the convergence rate is accelerated,thereby improving control performance.The simulation test results show that the accuracy of the improved PPO algorithm is greater than 90%at different iterations,with a maximum accuracy of 92%.However,the accuracy of the k-NN algorithm fluctuates to some extent at different iterations,with a maxi-mum accuracy of 90%and a minimum accuracy of only 80%.And the total computational time cost of im-proving the PPO algorithm and PPO algorithm is basically the same,both of which are 1 932.4 seconds.But improving the PPO algorithm can make the loss value converge faster during the training process.

proximal strategy optimization algorithmdimensional cropping techniquesaccuracycontrol performance

王进月、尹存珍、佀庆民、付帅

展开 >

郑州航空工业管理学院民航学院,河南郑州

近端策略优化算法 维度裁剪技术 准确率 控制性能

河南省高等学校青年骨干教师培养计划河南省高等学校重点科研项目

2020GGJS17424A620005

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(14)
  • 3