首页|基于红外图像处理的箱式变压器组件检测研究

基于红外图像处理的箱式变压器组件检测研究

扫码查看
为解决高原风电箱变巡视问题,减少巡视工作量,提高设备运行稳定性,针对基于红外图像处理的箱式变压器组件检测技术展开研究.构建YOLOv8模型作为本文实验的主要算法,在红外图像基础上,通过特征提取、目标检测头部网络、位置预测等步骤,设计检测算法,配置实验参数,训练模型.最后的实验结果表明,YOLOv8n模型mAP达到95.1%,在实验设备上识别速度达到0.35 s,与YOLOv3识别速度相比提升了74%,证明了YOLOv8算法在实际运用中可行性和有效性.
Detection of Box-type Transformer Components Based on Infrared Image Processing
To solve the inspection problem of Gaoyuan wind power box transformer,reduce inspection workload,and improve equipment operation stability,research is conducted on the detection technology of box transformer components based on infrared image processing.The YOLOv8 model is constructed as the main algorithm for this article's experiment.Based on infrared images,detection algorithms are designed,experimental parameters are configured,and the model is trained through steps such as feature extraction,target detection head network,and position prediction.The final experimental results show that the mAP of the YOLOv8n model reaches 95.1%,and the recognition speed on the experimental equipment reaches 0.35 s,which is 74%higher than the recognition speed of YOLOv3.This proves the feasibility and effectiveness of the YOLOv8 algorithm in practical application.

box-type transformer component testinginfrared image recognitiondeep learningYOLOv8

全欣宇、彭诗援、钱宏杰

展开 >

华能新能源股份有限公司云南分公司,云南昆明

箱式变压器部件检测 红外图像识别 深度学习 YOLOv8

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(14)
  • 3