首页|基于卷积神经网络的人脸识别

基于卷积神经网络的人脸识别

扫码查看
人脸识别是计算机视觉领域中的一项重要技术,具有广泛的应用场景,如安全监控、身份验证、社交网络等.本文采用深度学习技术提出了一种基于卷积神经网络(CNN)的人脸识别模型,通过训练大量的数据实现了人脸的高精度识别.本文首先详细描述了卷积神经网络模型的设计和实现过程.然后使用ReLU激活函数增加模型的非线性,通过反向传播算法进行实练,最后在公开人脸数据集上对模型进行训练和测试,达到了100%的正确率.实验结果表明,该模型在识别率、鲁棒性和泛化能力等方面都表现出了优异的性能.
Facial Recognition Based on Convolutional Neural Networks
Facial recognition is an important technology in the field of computer vision,with a wide range of application scenarios,such as security monitoring,identity verification,social networks,etc.This article proposes a face recognition model based on Convolutional Neural Networks(CNN)using deep learning tech-niques,which achieves high-precision recognition of faces by training a large amount of data.This article first provides a detailed description of the design and implementation process of a convolutional neural network model.Then,the ReLU activation function was used to increase the nonlinearity of the model,and the back-propagation algorithm was used for practical training.Finally,the model was trained and tested on a publicly available facial dataset,achieving a 100%accuracy rate.The experimental results show that the model ex-hibits excellent performance in recognition rate,robustness,and generalization ability.

facial recognitioncomputer visionconvolutional neural networksdeep learning

刘航、孔维泽、牟卓晶、朱亚茹

展开 >

华北电力大学,河北保定

人脸识别 计算机视觉 卷积神经网络 深度学习

全国大学生创新创业训练计划(2023)

X2023-124

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(14)
  • 3