首页|基于LSTM神经网络模型分析预测钢材价格

基于LSTM神经网络模型分析预测钢材价格

扫码查看
钢价时间序列具有明显的长短记忆特征,故以施工企业安徽省的项目部实际采购规格型号为HRB400Eφ16 螺纹钢的金额为例,科学合理的运用LSTM模型对其建模,并与传统的ARIMA模型进行对比,结果表明LSTM模型的预测相对误差为 0.03,比ARIMA模型预测精度更好,适合用来预测建筑钢材价格.
Analysis and Prediction of Steel Prices Based on LSTM Neural Network Model
Steel price time series has obvious long and short memory characteristics.Taking the amount of HRB400Eφ16 rebar actually purchased by the project department of a construction enterprise in Anhui Province as an example,the LSTM model is scientifically and reasonably used to model it,and compared with the traditional ARIMA model,the results show that the relative error of the prediction of the LSTM model is 0.03.It is more accurate than ARIMA model and suitable for predicting construction steel prices.

prediction of steel pricestime seriesLSTM modelARIMA modellong and short-term memory

李田田、胡伟、余俊锋

展开 >

安徽数智建造研究院有限公司,安徽 合肥

钢材价格预测 时间序列 LSTM模型 ARIMA模型 长短时记忆性

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(15)