首页|基于深度学习的地基云图分割研究

基于深度学习的地基云图分割研究

扫码查看
地基云图分割本身易受天、光线和太阳直射角等因素影响,已有深度学习分割方法在不进行领域适配的前提下,往往对云层边界分割效果不佳.基于以上因素,本文选取了对边界识别能力较强的CloudSeg Net、DeepLabV3 以及U-Net模型.另外,为了选择出最优的特征抽取网络,本文通过调研选择了VGG19、ResNet101、SE_Resnext101 以及mobilenet_v2 作为候选的特征抽取网络.最后,为了进一步提升模型对云层边界的分割能力,本文在已有的深度分割模型基础上,引入多任务学习,实现对云层边界单独建模,提高模型的云层边界识别能力.
Research on Ground-Based Cloud Image Segmentation Based on Deep Learning
ground-based cloud segmentation is susceptible to various environmental factors such as weather conditions,lighting,and solar zenith angle.Existing deep learning segmentation methods often yield unsatisfac tory results in cloud boundary segmentation without domain adaptation.Considering these factors,this study selects the CloudSegNet,DeepLabV3,and U-Net models known for their strong boundary recognition capabili ties.Furthermore,to identify the optimal feature extraction networks,VGG19,ResNet101,SE_Resnext101,and Mobilenet_v2 are chosen through research.Lastly,to further enhance the segmentation capability of cloud boundaries,multi-task learning is introduced on top of existing deep segmentation models to independently model cloud layer boundaries and improve the recognition ability of cloud layer boundaries.

ground-based cloud imagerydeep learningfeature extraction networksmulti-task learning network

官禹、李守智

展开 >

中国科学院空天信息创新研究院,北京

中国科学院空间信息处理与应用系统技术重点实验室,北京

中国科学院大学 电子电气与工程学院,北京

地基云图 深度学习 特征抽取网络 多任务学习网络

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(16)
  • 1