首页|基于无人机航拍视频图像的输电线路绝缘子故障智能检测研究与应用

基于无人机航拍视频图像的输电线路绝缘子故障智能检测研究与应用

扫码查看
随着我国经济的不断提高,国家对电力的需求也在增加.其中,绝缘子广泛应用于高压输电线路中,起到绝缘和支撑作用.长时间暴露在外或长期使用,会导致其污损和劣化,更易发生闪络放电等危险现象.因此,绝缘子故障检测成为电网巡检的重要部分.但寻常的人工检查不仅工作量大、成本高且危险性高,于是,智能无人机检测应运而生.利用无人机进行电力巡检,不仅提高工作效率,也能减少野外工作,降低巡检成本.由于传统图像处理技术对无人机绝缘子特征提取效果不理想、检测方法通用性低,本文提出一种绝缘子识别定位方法.该改正技术基于YOLOv4 算法,大大提高了准确度,在不同环境下的绝缘子检测具有良好的性能,并具有一定的通用性.
Research and Application of Intelligent Detection of Transmission Line Insulator Fault Based on UAV Aerial Video Images
Along with the continuous improvement of our economy,the demand of national power is also increasing.Among them,insulators are widely used in high voltage transmission lines to play the role of insulation and support.Long time exposure or long-term use,will lead to its stain and deterioration,more prone to flashover discharge and other dangerous phenomena.Therefore,insulator fault detection becomes an important part of power grid inspection.But ordinary manual inspection is not only heavy work,high cost and high risk,so intelligent drone inspection comes into being.Using UAV for power inspection not only improves work efficiency,but also reduces field work and inspection cost.Due to the unsatisfactory effect of traditional image processing technology on insulator feature extraction of UAV and the low universality of detection method,an insulator identification and positioning method is proposed in this paper.The correction technology is based on YOLOv4 algorithm,which greatly improves the accuracy and has good performance and certain universality in insulator detection under different environments.

insulatordronetransmission lineYOLOv4intelligent fault detectionobject detection

许一凡、张璐楠、郭依一、汪涛涛、祖旻曦

展开 >

安徽理工大学 电气与信息工程学院,安徽 淮南

绝缘子 无人机 输电线路 YOLOv4 故障智能检测 目标检测

大学生创新创业项目

202210361066

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(16)