首页|基于卷积神经网络的学习疲劳检测研究

基于卷积神经网络的学习疲劳检测研究

扫码查看
学习疲劳检测有助于教师获取学生的不良学习状态,从而进行针对性的干预,提高教学质量,促进学生身心健康发展.本文提出一种基于卷积神经网络的学习疲劳检测方法,该方法基于改进的SSD目标检测算法实现学生面部的实时精准检测,然后将面部图像输入改进的VGG16深度卷积神经网络进行学习疲劳特征的全面有效提取,实现学习疲劳的高效识别.实验结果表明,该方法既实现了人脸的精准定位,又显著提升了人脸检测速度,并明显地提高了疲劳识别的准确度.
Research on Learning Fatigue Detection Based on Convolutional Neural Networks
Learning fatigue detection helps teachers to identify students'negative learning states,provide targeted interventions,improve teaching quality,and promote the physical and mental health development of students.This article proposes a learning fatigue detection method based on convolutional neural networks.The method is based on an improved SSD object detection algorithm to achieve real-time and accurate detection of students'faces.Then,the facial images are input into an improved VGG16 deep convolutional neural network for comprehensive and effective extraction of learning fatigue features,achieving efficient recognition of learning fatigue.The experimental results show that this method not only achieves precise facial localization,but also significantly improves the speed of facial detection,and significantly improves the accuracy of fatigue recognition.

convolutional neural networkslearning fatigue detectionSSDVGG16

范凌云

展开 >

重庆城市职业学院,重庆

卷积神经网络 学习疲劳检测 SSD VGG16

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(17)