科学技术创新2024,Issue(17) :119-123.

基于运能释放的集装箱货运班列优化模型算法研究

Research on Optimization Model Algorithm for Container Freight Train Based on Capacity Release

张越 白瀑 宋大亮 李南青
科学技术创新2024,Issue(17) :119-123.

基于运能释放的集装箱货运班列优化模型算法研究

Research on Optimization Model Algorithm for Container Freight Train Based on Capacity Release

张越 1白瀑 1宋大亮 1李南青1
扫码查看

作者信息

  • 1. 铁科院(深圳)研究设计院有限公司,广东深圳
  • 折叠

摘要

该报告提出了一种基于运能释放的集装箱货运班列优化模型算法.该算法综合运用K-means聚类和Dijkstra最短路径算法,通过对公路和铁路网络数据进行特征提取和约束条件下的最短路径搜索,求解出满足时间和成本约束的集装箱货运班列最优线路.报告详细阐述了算法原理、模型构建、训练和评估过程,并给出了具体的模型输入输出要求、应用场景及效果.该算法有助于发挥铁路运输优势,实现货运资源的优化配置,提高多式联运效率.

Abstract

This report proposes an optimization model algorithm for container freight train based on trans port capacity release.The algorithm combines K-means clustering and Dijkstra's shortest path algorithm to extract features from road and railway network data and search the shortest path under constraints to obtain the optimal route for container freight train meeting time and cost constraints.The report elaborates on the algorithm principles,model building,training and evaluation,and provides specific requirements on model input and output,application scenarios and effects.This algorithm helps leverage the advantages of railway transport,optimize allocation of freight resources,and improve the efficiency of multimodal transport.

关键词

多式联运/运能释放/集装箱货运/线路优化/K-means聚类/Dijkstra算法

Key words

multimodal transport/capacity release/container freight/route optimization/K-means cluster-ing/Dijkstra's algorithm

引用本文复制引用

出版年

2024
科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
段落导航相关论文