首页|鸽群优化算法在多无人机航迹规划中的应用

鸽群优化算法在多无人机航迹规划中的应用

扫码查看
为了优化多无人机编队的协同飞行和航迹规划,本文通过介绍多无人机编队模型的建立过程,详细分析了航迹规划环境约束条件的设置方法.在此基础上,提出了基于鸽群优化算法的多无人机协同优化策略,该策略通过模拟鸽群的飞行和寻巢行为,实现无人机编队的协同飞行和航迹规划.此外,本文还探讨了多无人机空间协同碰撞检验的重要性,以确保无人机在飞行过程中的安全性.研究结果表明,基于鸽群优化算法的多无人机协同优化方法能够有效提高航迹规划的全局搜索能力,减少陷入局部最优的情况,同时降低计算量,提升算法效率,为无人机编队的协同飞行提供了有效的解决方案.
Application of Pigeon Swarm Optimization Algorithm in Multi UAV Trajectory Planning
In order to optimize the collaborative flight and trajectory planning of multiple unmanned aerial vehicle formations,this article introduces the process of establishing a model for multiple unmanned aerial vehicle formations and analyzes in detail the method of setting environmental constraints for trajectory planning.On this basis,a multi UAV collaborative optimization strategy based on pigeon swarm optimization algorithm is proposed.This strategy simulates the flight and nest seeking behavior of pigeon swarms to achieve collaborative flight and trajectory planning of UAV formations.In addition,this article also explores the importance of collaborative collision detection among multiple drones in space to ensure the safety of drones during flight.The research results indicate that the multi UAV collaborative optimization method based on pigeon swarm optimization algorithm can effectively improve the global search ability of trajectory planning,reduce the situation of falling into local optima,reduce computational complexity,improve algorithm efficiency,and provide an effective solution for the collaborative flight of UAV formations.

pigeon swarm optimization algorithmdronescollaborationtrackplanning

莫一夫、张筱岑、李钰

展开 >

广东电网有限责任公司应急及风险管理中心,广东广州

鸽群优化算法 无人机 协同 航迹 规划

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(19)