首页|高山风电风功率预测系统的优化研究

高山风电风功率预测系统的优化研究

扫码查看
为提高高山风电风功率预测准确性,优化风功率预测系统模型.文章以风电数据预处理为切入点,基于VMD分解法,提取频域信息与时域信息为模态风量,以AFC算法将其划分为低频与高频分量,采取相适应网络模型学习、训练不同频率特征分量.结果表明,低频信号可选择AT编码-解码网络,高频分量可选择DBN网络,对其数据进行整合,有效提高模型预测精度.
Optimization Research on Wind Power Prediction System for High-altitude Wind Power
In order to improve the accuracy of wind power prediction for high-altitude wind power,the wind power prediction system model is optimized.The article takes wind power data preprocessing as the starting point,based on VMD decomposition method,extracts frequency domain information and time domain information as modal air volume,divides it into low-frequency and high-frequency components using AFC algorithm,and adopts adaptive network models to learn and train different frequency feature components.The results indicate that the AT encoding decoding network can be chosen for low-frequency signals,and the DBN network can be chosen for high-frequency components to integrate their data and effectively improve the prediction accuracy of the model.

high mountainswind power generationwind power predictionsystem optimization

时靖博

展开 >

国家电投集团四川电力有限公司凉山分公司,四川 凉山

高山 风电发电 风功率预测 系统优化

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(19)